
MusicBrainz Picard
Release v2.4.4

Dec 11, 2020

MusicBrainz Picard User Guide by Bob Swift is licensed under CC0 1.0. To view a copy of this license,
visit https://creativecommons.org/publicdomain/zero/1.0

CONTENTS

1 Introduction 1
1.1 Picard Can. 2
1.2 Picard Cannot. 2
1.3 Limitations . 2

2 Contributing to the Project 3

3 Acknowledgements 4
3.1 Editor and English Language Lead . 4
3.2 Translation Teams . 4
3.3 Contributors . 4

4 Glossary of Terms 6

5 Getting Started 10
5.1 Download & Install Picard . 10
5.2 Main Screen . 11
5.3 Status Icons . 12

6 Configuration 14
6.1 Screen Setup . 14
6.2 Action Options . 15
6.3 Option Settings . 15

7 Tags & Variables 60
7.1 Basic Tags . 60
7.2 Advanced Tags . 65
7.3 Basic Variables . 66
7.4 Advanced Variables . 68
7.5 Classical Music Tags . 69
7.6 Tags from Plugins . 69
7.7 Other Information . 72

8 Scripting 73
8.1 Syntax . 73
8.2 Metadata Variables . 73

i

9 Scripting Functions 74
9.1 Assignment Functions . 74
9.2 Text Functions . 77
9.3 Multi-Value Functions . 88
9.4 Mathematical Functions . 95
9.5 Conditional Functions . 97
9.6 Information Functions . 108
9.7 Loop Functions . 109
9.8 Miscellaneous Functions . 110

10 Using Picard 112
10.1 Retrieving Album information . 112
10.2 Matching Files to Tracks . 126
10.3 Setting the Cover Art . 127
10.4 Saving Updated Files . 129

11 Work Flow Recommendations 131
11.1 When the CD is available . 131
11.2 When files are grouped by album . 132
11.3 When files are not grouped but have some metadata . 133
11.4 When files are not grouped and have little or no existing metadata 134

12 Other Picard Tasks 136
12.1 Attaching a Disc ID to a Release . 136
12.2 Submitting Acoustic Fingerprints . 138

13 Extending Picard 143
13.1 Plugins . 143
13.2 Scripts . 144
13.3 Processing Order . 145

14 Troubleshooting 148
14.1 General Troubleshooting . 148
14.2 There is no coverart . 149
14.3 Tags are not updated or saved . 150
14.4 Files are not being saved . 151
14.5 Picard just stopped working . 151

15 Frequently Asked Questions 153
15.1 Using Picard . 153
15.2 File Formats . 154
15.3 Configuration . 156

16 Appendices 158
16.1 Appendix A: Plugins API . 158
16.2 Appendix B: Tag Mapping . 164
16.3 Appendix C: Command Line Options . 187

Index 188

ii

CHAPTER

ONE

INTRODUCTION

MusicBrainz Picard is a cross-platform music file tagger. For any people who don’t know what this means,
here is a quick explanation which can be skipped by those people who already know.

Your music files don’t just contain music. They also contain “metadata”, consisting of “tags” which consist
of a tag name or type and associated data, for example the album or track name, the name of the artist, the
record label, the year of issue etc. Unless you rip the music files yourself with a very basic tool, your music
files probably already contain some basic metadata, however there are literally hundreds of tags that can be
applied to your music if you are interested.

Obviously, if you wanted to you could painstakingly research all this information for each album and track
individually, and type the data into a tagging tool, but clearly it makes more sense in this internet connected
age for one person to do this for each album and track, to upload that data to a shared database and then for
the tagging tool to access that database and use the data to tag the music files. And that is what MusicBrainz
Picard does.

MusicBrainz is the database, and Picard is the tool that tags the music files.

This User Guide is intended to provide comprehensive information related to the use of MusicBrainz Picard
and additionally to make this available in alternate formats, including a PDF version suitable for printing.
Links to additional information such as scripts, plugins and tutorials are provided when available rather than
trying to reproduce the information in this document.

In order to effectively use Picard, it is important to understand what the program can do and, equally impor-
tant, what it cannot do. Picard is primarily intended to tag and organize albums containing tracks, guided by
the user to the specific release of the album that they have, and then to keep the metadata for these tracks up
to date as users around the world enhance the quality of the MusicBrainz data associated with that particular
release and track; Picard does this very well indeed. However, it is not intended to automatically organize
your collection of thousands of random music files, and if this is what you are hoping for then you will
likely be disappointed. To quote from the Picard website, “Picard is not built to be a mass single-track
tag fixer. Picard believes in quality over quantity and provides a plethora of customizations to tweak music
collections to your needs.”

1

https://picard.musicbrainz.org/

MusicBrainz Picard, Release v2.4.4

1.1 Picard Can. . .

. . . add metadata tags to your music files, based on information available from the MusicBrainz website.

. . . look up the metadata either manually or automatically based on existing information, including artist and
song name, disc id (for CDs), and a track’s AcoustID fingerprint.

. . . retrieve and embed coverart images from a variety of sources.

. . . rename and place the music files in directories based on naming template instructions provided in a
naming script.

. . . calculate and submit a disc id to the MusicBrainz database, attaching it to a specified release.

. . . calculate and submit a music file’s AcoustID fingerprint to the AcoustID database.

1.2 Picard Cannot. . .

. . . automatically identify and remove all duplicate music files in your collection.

. . . provide metadata not already existing in the MusicBrainz database.

1.3 Limitations

File Formats

Picard currently supports most music file formats, with Matroska (.mka) being one notable exception. Mi-
crosoft WAVE (.wav) files can be fingerprinted and renamed and can be tagged using ID3v2 tags, but this
is not supported by all playback software. In addition, Picard does not support writing custom tags for all
formats.

The Picard Tag Mappings section provides more information regarding the mapping between Picard internal
tag names and various tagging formats.

Request Rate Limiting

Picard’s metadata retrieval is limited to the standard one request per second rate limiting for the Music-
Brainz API. This becomes quite noticeable when trying to process a large list of files, and is exacerbated by
extensions that perform additional information requests from the database.

Network File Processing

Sometimes Picard needs to rewrite the entire music file in order to add or update the tags. This can take a
few seconds, and the delay becomes even longer if the file is accessed across a network (e.g.: file is read
from or written to a NAS device). The recommended “best practice” is to process all files on a local drive
and then move them to the desired remote directory once processing is complete.

2 Chapter 1. Introduction

https://musicbrainz.org/
https://acoustid.org/

CHAPTER

TWO

CONTRIBUTING TO THE PROJECT

This document only exists because of the volunteer effort that went into its development, from the initial
documentation on the Picard website, the information posted in the Community Discussion Forum, docu-
mentation from scripts, plugins and program source code, proofreaders, editors, translators, and feedback
from the user community.

Further high quality contributions are welcomed from all Picard users wanting to be part of the open source
community that creates and maintains this valuable music tool. Even if you cannot write code, based on
your experience of using Picard any help you can give to improve this documentation further will be most
appreciated. Even if you cannot improve the existing help, if you can create or maintain translations into
other languages, that would be of great benefit.

If you notice an error in the documentation or have additional material to contribute, please raise an issue
on the documentation project on GitHub. Pull Requests to address outstanding issues are also appreciated.

See also:

Contributing to MusicBrainz Picard / Picard Translations / Contributing to the Documentation

3

https://github.com/rdswift/picard-docs/issues
https://github.com/rdswift/picard-docs/
https://github.com/rdswift/picard-docs/pulls
https://github.com/metabrainz/picard/blob/master/CONTRIBUTING.md
https://github.com/metabrainz/picard/blob/master/po/README.md
https://github.com/rdswift/picard-docs/blob/master/.github/CONTRIBUTING.md

CHAPTER

THREE

ACKNOWLEDGEMENTS

We gratefully acknowledge the following for their contributions to help develop, maintain and improve the
Picard User Guide:

3.1 Editor and English Language Lead

• Bob Swift (rdswift)

3.2 Translation Teams

3.2.1 French (Lead: TBA)

• TBA

3.2.2 German (Lead: TBA)

• TBA

3.2.3 Spanish (Lead: TBA)

• TBA

3.3 Contributors

This list includes contributors to the documentation, regardless of their role. In addition to actual content
contributors, this includes leads, translators, reviewers and proofreaders. All contributions are valuable and
appreciated. As such, the names are presented in alphabetical order so as not to imply the relative importance
of someone’s contribution based on their position in the list.

Contributors include (in alphabetical order by surname):

• Vedant Chakravadhanula

4

MusicBrainz Picard, Release v2.4.4

• Pavan Chander

• Rahul Kumar Gupta

• Wieland Hoffmann

• Jun Kim

• Sambhav Kothari

• Laurent Monin

• Akash Nagaraj

• Frederik “Freso” S. Olesen

• Theodore Fabian Rudy

• Sophist

• Bob Swift

• Philipp Wolfer

• Shadab Zafar

Note: There are likely others that have not yet been identified, so we apologize if your name has been
missed. Please let us know and we’ll make sure that it is added to the list.

3.3. Contributors 5

CHAPTER

FOUR

GLOSSARY OF TERMS

Many of the terms used in this documentation and within Picard itself have specific meaning in the Music-
Brainz environment. Specific terms are defined as follows:

acoustic fingerprint

An acoustic fingerprint is a digital summary of an audio signal, that can be used to quickly
identify the audio.

Please see Wikipedia for a full explanation of acoustic fingerprinting.

AcoustID

AcoustID is an acoustic fingerprint system built entirely on open-source technology. See the
AcoustID website for additional information.

albumartist

The musician or group of musicians performing on a release. For example, “The Beatles”
is the albumartist for the album “Past Masters, Volume One”, while the albumartist for “No
Boundaries: A Benefit for the Kosovar Refugees” is “Various Artists”.

Note: The albumartist usage is different for Classical Music releases, which follow the Music-
Brainz Classical Style Guide, listing the composer(s) first, followed by the performers.

artist

The musician or group of musicians performing on a track. For example, “Jeen” is the artist on
the track “Be (One in a Million)” on the album “Tourist”.

Please see the Artist page on the MusicBrainz website for additional information.

Note: The artist usage is different for Classical Music releases, which follow the MusicBrainz
Classical Style Guide, showing only the composer and not the performers.

artist credit

Artist credits indicate who is the main credited artist (or artists) for releases, release groups,
tracks and recordings, and how they are credited. They consist of artists, with (optionally)
their names as credited in the specific release, track, etc., and join phrases between them. For

6

https://wikipedia.org/wiki/Acoustic_fingerprint
https://acoustid.org/
https://musicbrainz.org/release/9383a6f5-9607-4a36-9c68-8663aad3592b
https://musicbrainz.org/release/65536c6a-9219-4c41-9829-781eab7cdb50
https://musicbrainz.org/release/65536c6a-9219-4c41-9829-781eab7cdb50
https://musicbrainz.org/doc/Style/Classical
https://musicbrainz.org/track/5acda7a7-697c-4614-8467-7c48b3d946a6
https://musicbrainz.org/release/472f4da8-c7dd-4e4a-8aae-9e7824f85afc
https://musicbrainz.org/doc/Artist

MusicBrainz Picard, Release v2.4.4

example, on the release “Love Sponge” the artist is “Walk off the Earth” but is credited as
“Gianni and Sarah”.

Please see the Artist Credits page on the MusicBrainz website for additional information.

caa

The Cover Art Archive which is a joint project between the Internet Archive and MusicBrainz,
whose goal is to make cover art images available to everyone on the Internet in an organised
and convenient way.

Please see the Cover Art Archive page on the MusicBrainz website for additional information.

disc id

A Disc ID is the code number which MusicBrainz uses to link a physical CD to a release listing.
It is a string of letters, like XzPS7vW.HPHsYemQh0HBUGr8vuU-. Disc IDs for a release can
be seen on the disc IDs tab for the release on MusicBrainz. Clicking on these will give a detailed
display of the disc ID, including the list of attached releases.

A release may have any number of disc IDs, and a disc ID may be linked to multiple releases.
This is because disc ID calculation involves a hash of the frame offsets of the CD tracks. Dif-
ferent pressing of a CD often have slightly different frame offsets, and hence different disc
IDs.

Conversely, two different CDs may happen to have exactly the same set of frame offsets and
hence the same disc ID. For example lwHl8fGzJyLXQR33ug60E8jhf4k- applies to a
wide variety of releases by a variety of artists.

mbid

The MusicBrainz Identifier, which is a unique code used to identify each element in the Music-
Brainz database. These are 128-bit Universally Unique Identifiers (UUID) represented as 32
hexadecimal digits, displayed in five groups separated by hyphens, in the form 8-4-4-4-12 for a
total of 36 characters.

Please see the UUID page on Wikipedia for more information.

medium

One of the physical, separate things you would get when you buy something in a record store.
They are the individual CDs, vinyls, etc. contained within the packaging of an album (or any
other type of release). Mediums are always included in a release, and have a position in said
release (e.g. disc 1 or disc 2). They have a format like CD, 12” vinyl or cassette (in some
cases this will be unknown), and can have an optional title (e.g. disc 2: The Early Years). For
example, CD 1 of “The Wall”.

Please see the Medium page on the MusicBrainz website for additional information.

non-album track

This term is obsolete and has been replaced with ‘standalone recording’.

recording

7

https://musicbrainz.org/release/6ca797fd-8f3a-4326-bdc7-f805cb2de088
https://musicbrainz.org/artist/e2a5eaeb-7de7-4ffe-a519-e18e427a5060
https://musicbrainz.org/doc/Artist_Credits
https://coverartarchive.org/
https://archive.org/
https://musicbrainz.org/
https://musicbrainz.org/doc/Cover_Art_Archive
https://musicbrainz.org/doc/Disc_ID_Calculation
https://musicbrainz.org/cdtoc/lwHl8fGzJyLXQR33ug60E8jhf4k-
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://musicbrainz.org/release/4bd2dbd5-a961-335a-a618-39c26b2ee791#disc1
https://musicbrainz.org/doc/Medium

MusicBrainz Picard, Release v2.4.4

An entity in MusicBrainz which can be linked to tracks on releases. Each track must always be
associated with a single recording, but a recording can be linked to any number of tracks. For
example, this recording of “Bohemian Rhapsody” is found as a track on over 100 releases.

Please see the Recording page on the MusicBrainz website for additional information.

release

Represents the unique issuing of a product on a specific date with specific release information
such as the country, label, barcode and packaging. For example “Sea of No Cares” is one
version of the album released by Great Big Sea.

Please see the Release page on the MusicBrainz website for additional information.

release group

Groups several different releases into a single logical entity. Every release belongs to one, and
only one release group. Both release groups and releases are “albums” in a general sense, but
with an important difference: a release is something you can buy as media such as a CD or
a vinyl record, while a release group embraces the overall concept of an album — it doesn’t
matter how many CDs or editions / versions it had. For example the “Sea of No Cares” release
group contains multiple releases.

Please see the Release Group page on the MusicBrainz website for additional information.

standalone recording

A recording that is not linked to any release. An example is “Sea of No Cares (live)” by Great
Big Sea.

Please see the Standalone Recording page on the MusicBrainz website for additional informa-
tion.

track

A track is the way a recording is represented on a particular release (or, more precisely, on a
particular medium). Every track has a title and is credited to one or more artists. For example,
track 7 of the album “Back to Boston” by Jason Anderson is “Driving Home”.

Please see the Track page on the MusicBrainz website for additional information.

work

A distinct intellectual or artistic creation, which can be expressed in the form of one or more
audio recordings. While a ‘Work’ in MusicBrainz is usually musical in nature, it is not neces-
sarily so. A work could also be a novel, play, poem or essay, later recorded as an oratory or
audiobook. For example, the song “Blinded by the Light” written by Bruce Springsteen has
been recorded well over 100 times.

Please see the Work page on the MusicBrainz website for additional information.

See also:

For more information on these and other terms used, please refer to the Terminology page on the Music-
Brainz website.

See also:

8 Chapter 4. Glossary of Terms

https://musicbrainz.org/recording/b1a9c0e9-d987-4042-ae91-78d6a3267d69
https://musicbrainz.org/doc/Recording
https://musicbrainz.org/release/4e4ba41e-24ae-3f57-87f6-3d8f19ae9483
https://musicbrainz.org/doc/Release
https://musicbrainz.org/release-group/7e7ffd2b-3d1b-3487-aaaf-e4e6037f09ca
https://musicbrainz.org/doc/Release_Group
https://musicbrainz.org/recording/0198c132-ed38-430c-92bd-d3c7e9ff25b8
https://musicbrainz.org/doc/Standalone_Recording
https://musicbrainz.org/release/9780e88d-a9e2-4e99-87c4-e54b65e7e49b
https://musicbrainz.org/track/bf8ecb3c-6fe6-41b7-a078-5748265a9f94
https://musicbrainz.org/doc/Track
https://musicbrainz.org/work/7a757d97-da2a-3751-8d32-94d471de2eeb
https://musicbrainz.org/doc/Work
https://musicbrainz.org/doc/Terminology

MusicBrainz Picard, Release v2.4.4

For a detailed explanation of how all the elements are related within the MusicBrainz environment, please
refer to the MusicBrainz Database / Schema webpage.

9

https://musicbrainz.org/doc/MusicBrainz_Database/Schema

CHAPTER

FIVE

GETTING STARTED

5.1 Download & Install Picard

MusicBrainz Picard is available for all major desktop operating systems (e.g. Windows, Linux and macOS),
and in multiple forms (directly downloadable formal release executables, package manager versions of these,
daily build executables, Python source code that you can execute with your own Python environment, etc.)

It is expected that most users will run formal release executables or package manager equivalents as these are
easy to install, and are stable versions which are less likely to have bugs in experimental or new functionality.

However, any users wishing to contribute to the development of Picard or its Plugins may want to run from
source code, downloading it from GitHub using a version of Git on their own computer. If you want to
contribute to the Picard code but you don’t understand what the previous sentence said, then you have a bit
of a learning curve. :-)

The latest version of MusicBrainz Picard is always available for download from the Picard Website. This
includes installers for all supported platforms as well as release source code. The very latest source code is
also available at the GitHub repository.

5.1.1 Linux: Installing with Flatpak

Picard is also available on Flathub. This version should work on all modern Linux distributions, as long
Flatpak is installed.

First enable the Flathub repository:

flatpak remote-add --if-not-exists flathub https://flathub.org/repo/flathub.
→˓flatpakrepo

You can now install Picard:

flatpak install flathub org.musicbrainz.Picard

10

https://picard.musicbrainz.org/downloads/
https://picard.musicbrainz.org/downloads/#source
https://github.com/musicbrainz/picard

MusicBrainz Picard, Release v2.4.4

5.2 Main Screen

1. Menu Bar: This provides the pull-down menu of actions that Picard can perform.

2. Tool Bar: This provides quick links to the main functions performed by Picard. This can be cus-
tomized by the user in the User Interface Options settings.

3. File Browser: This provides a browser for selecting files and directories for processing.

4. Cluster Pane: Often referred to as the “left-hand pane”, this section allows the user to select and
cluster files for scanning, lookup or matching.

5. Album Pane: Often referred to as the “right-hand pane”, this section displays the albums retrieved
from MusicBrainz. This is the section where files are matched to downloaded track information.

6. Metadata Pane: This section is a three-column table of the tag metadata for the album or track
currently selected in the Album Pane. The first column shows the tag name, the second shows the
original value found in the file, and the third column shows the new value that will be written.

7. Cover Art: This shows the new cover art image that will be written to the selected album or track,
along with the original cover art image found in the files matched to the selected album or track.

8. Player: The built-in player that can be used to play selected audio files.

9. Status Bar: The bar at the bottom of the screen shows information about the current operation of
Picard, including such items as number of files, albums, and pending downloads.

5.2. Main Screen 11

MusicBrainz Picard, Release v2.4.4

5.3 Status Icons

When albums and tracks are displayed in the right-hand pane, each line begins with an icon to indicate the
status of the item.

5.3.1 Album / Release Icons

This icon indicates that the information for the release has been successfully retrieved from the
MusicBrainz database. Some, but not all, tracks may have been matched to files and the
information has not been modified.

This icon indicates that some of the tracks have been matched and that the information for the
release has been modified.

This icon indicates that all of the tracks have been matched and that the information has not
been modified.

This icon indicates that all of the tracks have been matched and that the information for the
release has been modified.

This icon indicates that Picard has encountered an error with the release, typically while
retrieving the information from the MusicBrainz database.

12 Chapter 5. Getting Started

MusicBrainz Picard, Release v2.4.4

5.3.2 Track Icons

This icon indicates that the track is an audio track and that there is no single file currently
matched. This appears if there is no file matched, of if there are multiple files matched.

This icon indicates that the track is a video track and that there is no file currently matched.
This appears if there is no file matched, of if there are multiple files matched.

This icon indicates that the track is a data track and that there is no file currently matched. This
appears if there is no file matched, of if there are multiple files matched.

These icons indicates the quality of match between the information from the file and the
information for the track as provided from the MusicBrainz database. Red indicates a poor
match, progressing to all green which indicates a very good match.

This icon indicates that the track has been saved successfully.

This icon indicates that Picard encountered an error while trying to save the track. This is
typically due to the file being marked as read-only, or you do not have sufficient permission to
save the file in the specified directory.

5.3. Status Icons 13

CHAPTER

SIX

CONFIGURATION

Once Picard has been installed on your system, the next step is to configure it to your preferences. The
configuration consists of enabling the desired screen sections for display, selecting the desired actions, and
setting the various options.

6.1 Screen Setup

The screen setup is found under the “View” item on the menu bar. To enable the display of an item, simply
check the box for the screen option. The items are:

File Browser

This displays a file browser on the left side of the screen for selecting files and directories
for processing. Files and directories can also be selected using your system’s file browser by
dragging and dropping them onto the Picard application.

Cover Art

This displays the cover art for the currently selected item (track or release) in a window to the
right of the tags section of the display. This allows you to select or replace the cover art saved
with the release.

Actions

This displays the button bar of the actions performed by Picard, located just below the menu
bar.

Search

This displays the manual search box to the right of the “Actions” button bar.

Player

This displays the built-in player for playing selected audio files.

14

MusicBrainz Picard, Release v2.4.4

6.2 Action Options

The action options are found under the “Options” item on the menu bar. There are three available actions
that Picard can perform when saving selected music files:

Rename Files

Picard will rename each file in accordance with the naming script.

Move Files

Picard will move files to the target directory in accordance with the naming script.

Save Tags

Picard will update the metadata tags in the files in accordance with the specified option settings
and tagging scripts.

6.3 Option Settings

The option settings are found under the “Options → Options. . . ” item on the menu bar. This will open a
new window with the option groups listed in a tree format on the left hand side, and the individual settings
on the right hand side. This is where the majority of Picard’s customization is performed.

6.2. Action Options 15

MusicBrainz Picard, Release v2.4.4

6.3.1 General Options

Server address

The domain name for the MusicBrainz database server used by Picard to get details of your
music. Default value: musicbrainz.org (for the main MusicBrainz server).

Port

The port number for the server. Default value: 80 (for the main MusicBrainz server).

Username

Your MusicBrainz website username, used to submit acoustic fingerprints, retrieve and save
items to your collections, and retrieve personal folksonomy tags.

Password

16 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Your MusicBrainz website password.

Automatically scan all new files

Check this box if you want Picard to scan each music file you add and look for an AcoustID
fingerprint. This takes time, but may be helpful for you and MusicBrainz. Leave it unchecked
if you don’t want Picard to do this scan automatically. In any case, you can direct Picard to scan
a particular music file at any time using “Tools → Scan”.

Ignore MBIDs when loading new files

If you disable this option Picard will not use MusicBrainz identifiers (MBIDs) stored in the
files to automatically load the corresponding MusicBrainz release and match the loaded file to
the correct track. This is useful when re-processing files that have been previously tagged with
incorrect information.

Check for updates during start-up

This option determines whether or not Picard will automatically check for program updates
during startup. In any case, you can have Picard check for program updates at any time using
“Help → Check for update”.

Days between checks

This option allows you to limit the automatic update checking by selecting the interval, in days,
between checks. Set this to 1 if you want to check daily, 7 for weekly checks, and so on. Note
that this only applies if the “Check for updates during start-up” option is enabled.

Updates to check

This option allows you to select which levels of update to check. Your options are:

• Stable releases only

• Stable and Beta releases

• Stable, Beta and Dev releases

For example, if you subscribe to “Stable releases only” you will not be notified if a new Beta or
Dev release is issued.

Note: The update checking related settings and “Help → Check for update. . . ” command may not be
available when Picard is distributed as a package. In that case, the user should check with the maintainer of
the package to determine when an update is available.

6.3. Option Settings 17

MusicBrainz Picard, Release v2.4.4

6.3.2 Metadata Options

Translate artist names to this locale where possible

When checked, Picard will see whether an artist has an alias for the selected locale. If it does,
Picard will use that alias instead of the artist name when tagging. When “English” is the selected
locale, the artist sort name (which is, by Style Guideline, stored in Latin script) is used as a
fallback if there is no English alias.

Use standardized artist names

Check to only use standard Artist names, rather than Artist Credits which may differ slightly
across tracks and releases.

Note: If the “Translate artist names” option above is also checked, it will override this option

18 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

if a suitable alias is found.

Use standardized instrument and vocal credits

Check to only use standard names for instruments and vocals in performer relationships.
Uncheck to use the instruments and vocals as credited in the relationship.

Convert Unicode punctuation characters to ASCII

Converts Unicode punctuation characters in MusicBrainz data to ASCII for consistent use of
punctuation in tags. For example, right single quotation marks are converted to ASCII apostro-
phes (‘), and horizontal ellipses are converted to three full stops (. . .).

Use release relationships

Check to retrieve and write release-level relationships (e.g.: URLs, composer, lyricist, per-
former, conductor, or DJ mixer) to your files. You must have this enabled to use Picard to
retrieve cover art.

Use track relationships

Check to write track-level relationships (e.g.: composer, lyricist, performer, or remixer) to your
files.

Various artists

Choose how you want the “Various Artists” artist spelled.

Non-album tracks

Choose how you want “non-album tracks” to be grouped.

6.3. Option Settings 19

MusicBrainz Picard, Release v2.4.4

Preferred Releases

Preferred release types

Adjust the sliders for various release types to tweak how likely Picard is to match a file or cluster
to releases of various types. For example, you can use this to decrease the likelihood of Picard
matching a file or album to a Compilation or Live version.

Preferred release countries

Add one or more countries into the list to make Picard prefer matching clusters or files to re-
leases from the chosen countries. This list is also used to prioritize files in the “Other Releases”
context menu.

Preferred release formats

20 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Add one or more formats into the list to make Picard prefer matching clusters or files to releases
of the specified format. This list is also used to prioritize files in the “Other Releases” context
menu.

Genres

Use genres from MusicBrainz

Use genres provided by MusicBrainz and save them to the genre tag.

Fall back on album’s artists genres if no genres are found for the release or release group

If there is no genre set for the release or release group on MusicBrainz, use the genre of the
album artist instead.

6.3. Option Settings 21

MusicBrainz Picard, Release v2.4.4

Only use my genres

When enabled, Picard will only write genres you personally have submitted to MusicBrainz.
You’ll need to set your username and password to use this feature.

Use folksonomy tags as genres

Check to use all folksonomy tags to set the genre. Otherwise only the tags considered by
MusicBrainz to be proper genres will be used.

Minimal genre usage

Choose how popular the genre must be before it is written by Picard. Default: 90%. Lowering
the value here will lead to more, but possibly less relevant, genres in your files.

Maximum number of genres

Choose how many genres to use. Default: 5. If you only want a single genre, set this to 1.

Join multiple genres with

Select which character should be used to separate multiple genres.

Genres or folksonomy tags to include or exclude

One expression per line, case-insensitive. You can use the “Playground” text field to enter some
genres and test the rules you have setup. Genres that will be excluded will be marked red,
included genres will be marked green.

• Comments: Lines not starting with ‘-‘ or ‘+’ are ignored. (e.g.: #comment, !comment
or comment)

• Strict filtering: Exclude exact word by prefixing it with ‘-‘ (e.g.: -word). Include exact
word, even if another rule would exclude it, by prefixing it with ‘+’ (e.g.: +word).

• Wildcard filtering: Exclude all genres ending with “word” (e.g.: -*word). Include all
genres starting with “word” (e.g.: +word*). Exclude all genres starting with ‘w’ and
ending with “rd” (e.g.: -w*rd).

• Regular expressions filtering (Python “re” syntax): Exclude genres starting with ‘w’
followed by any character, then ‘r’ followed by at least one ‘d’ (e.g.: -/^w.rd+/).

Playground for genres or folksonomy tags filters:

This area allows you to enter genre tags, one per line, to test your filters. If a tag is marked in
red, it will be filtered out. A tag marked green will be allowed.

Note: This list of test tags will be cleared when you exit the configuration section.

22 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Ratings

Enable track ratings

Check to write track ratings to your files.

E-mail

The email address used when submitting ratings to MusicBrainz. This identifies the user that
provided the rating.

Submit ratings to MusicBrainz

Check to submit ratings to MusicBrainz. The tracks will be rated with your account.

6.3. Option Settings 23

MusicBrainz Picard, Release v2.4.4

6.3.3 Tag Options

Write tags to files

Uncheck to disable Picard from writing metadata to your files. Picard may still move or rename
your files according to your settings.

Preserve timestamps of tagged files

If checked, Picard will not update the “Last Modified” date and time of your music files when
it writes new tags to them.

24 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Before Tagging

Clear existing tags

Checking this will remove all existing metadata and leave your files with only MusicBrainz
metadata. Information you may have added through another media player such as “genre”,
“comments” or “ratings” will be removed.

Remove ID3 tags from FLAC files

Check to remove ID3 tags from FLAC files – Vorbis Comments are recommended for FLAC
files. Picard will write Vorbis Comments to FLAC files regardless of this setting.

Remove APEv2 tags from MP3 files

Check to remove APEv2 tags from MP3 files – ID3 is recommended for MP3 files. Picard will
write ID3 tags to MP3 files regardless of this setting.

Preserve these tags from being cleared or overwritten with MusicBrainz data

This is an advanced option: If you have tags which you need to preserve, enter their names here
to stop Picard from overwriting them.

6.3. Option Settings 25

MusicBrainz Picard, Release v2.4.4

ID3 Files

ID3v2 version

Although ID3v2.4 is the latest version, its support in music players is still lacking. While some
software has no problem using version 2.4 tags, others may not be able to read the tags and
display the information. Support for ID3v2.4 in other media players (such as smartphones) is
variable.

Other than native support for multi-valued tags in v2.4, the Picard Tag Mapping section will
show you what you lose when choosing v2.3 instead of v2.4.

ID3v2 text encoding

The default for version 2.4 is UTF-8, the default for version 2.3 is UTF-16. Use ISO-8859-1
only if you face compatibility issues with your player.

26 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Join ID3v23 tags with

As mentioned above, ID3v2.3 does not support multi-value tags, and so Picard flattens these to
strings before saving them to ID3v2.3 tags. This setting defines the string used to separate the
values when flattened. Use ‘; ‘ for the greatest compatibility (rather than ‘/’ since tags more
often contain a ‘/’ than a ‘;’) and for the best visual compatibility in Picard between ID3v2.3
and other tagging formats.

Save iTunes compatible grouping and work

Save the tags grouping and work so that they are compatible with current iTunes versions.
Without this option grouping will be displayed in iTunes as “work name” and work will not be
available.

See the Picard Tag Mapping section for details.

Note: For other players supporting grouping and work you might need to disable this option.
MusicBee is one example of this.

Also include ID3v1 tags in the files

This is not recommended at all. ID3v1.1 tags are obsolete and may not work with non-latin
scripts.

6.3. Option Settings 27

https://getmusicbee.com/

MusicBrainz Picard, Release v2.4.4

AAC Files

Picard can save APEv2 tags to pure AAC files, which by default do not support tagging. APEv2 tags in
AAC are supported by some players, but players not supporting AAC files with APEv2 tags can have issues
loading and playing those files. To deal with this you can choose whether to save tags to those files:

Save APEv2 tags

Picard will save APEv2 tags to the files.

Do not save tags

Picard will not save any tags to the files, but you can still use Picard to rename them. By default
existing APEv2 tags will be kept in the file.

Remove APEv2 tags

28 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

If you have “Do not save tags” enabled checking this option will cause Picard to remove existing
APEv2 tags from the file on saving.

Regardless of how you have configured saving tags Picard will always read existing APEv2 tags in AAC
files.

AC3 Files

Picard can save APEv2 tags to pure AC3 files, which by default do not support tagging. APEv2 tags in
AC3 are supported by some players, but players not supporting AC3 files with APEv2 tags can have issues
loading and playing those files. To deal with this you can choose whether to save tags to those files:

Save APEv2 tags

Picard will save APEv2 tags to the files.

6.3. Option Settings 29

MusicBrainz Picard, Release v2.4.4

Do not save tags

Picard will not save any tags to the files, but you can still use Picard to rename them. By default
existing APEv2 tags will be kept in the file.

Remove APEv2 tags

If you have “Do not save tags” enabled checking this option will cause Picard to remove existing
APEv2 tags from the file on saving.

Regardless of how you have configured saving tags Picard will always read existing APEv2 tags in AC3
files.

WAVE Files

30 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

WAVE by itself as a standard only supports the INFO chunk tags, which are very limited. In addition, INFO
chunks don’t have any proper support for encoding.

In all cases Picard will write ID3 tags to the WAVE files. This is supported by quite a few tools; however, it
is not supported universally. Tools not supporting ID3 tags should just ignore them. If possible, this is likely
the best option to have proper tags in WAVE files. For compatibility with software that does not support
ID3v2 tags, Picard can also save Resource Interchange File Format (RIFF) INFO tags to WAVE files. RIFF
INFO is read and written only as an extra. If there are no existing ID3 tags, the data from RIFF INFO will
be used. When saving files, RIFF INFO will be written in addition to the ID3v2 tags.

Picard’s use of the RIFF INFO tags is determined by the following configuration settings:

Also include RIFF INFO tags in the files

Picard will save the RIFF INFO tags to the files.

Remove existing RIFF INFO tags from WAVE files

Picard will remove any existing RIFF INFO tags from the WAVE files. This setting is ignored
if the previous setting is enabled to allow writing the RIFF INFO tags to the files.

RIFF INFO Text Encoding

This setting allows you to specify the encoding used for the RIFF INFO tags written. The
default setting is Windows-1252 encoding. Picard can also use UTF-8 as an alternative, which
allows for full language support, but it depends on the software reading it. Typically, if the
software supports this, it will read the ID3 tags anyway so there is not much to be gained.

6.3. Option Settings 31

https://wikipedia.org/wiki/Resource_Interchange_File_Format

MusicBrainz Picard, Release v2.4.4

6.3.4 Cover Art Options

Note: You must enable “Options → Metadata → Use release relationships” for Picard to be able to
download cover art from MusicBrainz cover art relationships.

32 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Location

Embed cover images into tags

Enables images to be embedded directly into your music files. While this will use more storage
space than storing it as a separate image file in the same directory, some music players will only
display embedded images and don’t find the separate files.

Only embed a front image

Embeds only a front image into your music files. Many music players will only display a single
embedded image, so embedding additional images may not add any functionality.

Save cover images as separate files

In the file name mask you can use any variable or function from Picard Tags and Picard Script-
ing Functions. The mask should not contain a file extension; this is added automatically based
on the actual image type. The default value is “cover”. If you change this to “folder”, Windows
will use it to preview the containing directory.

In addition to scripting variables already available for a track you can use the following cover
art specific variables:

• coverart_maintype: The primary type (e.g.: front, medium, booklet). For front
images this will always be “front”.

• coverart_types: Full list of all types assigned to this image.

• coverart_comment: The cover art comment.

Overwrite the file if it already exists

Check this to replace existing files. This is especially recommended if trying to write “folder”
previews for Windows.

Cover Art Providers

Picard can download Cover Art from a number of sources, and you can choose which sources you want
Picard to use. You can activate more than one provider and choose the order in which the providers are
queried. Picard will try the providers from top to bottom until an image is returned.

Cover Art Archive

The Cover Art Archive (CAA) is the MusicBrainz archive of cover art in cooperation with the
Internet Archive. The Cover Art Archive is the most comprehensive database of cover art (e.g.:
front covers, back covers, booklets, CDs).

CAA Release Group

This provider uses the Cover Art Archive cover image assigned to the release group. This is
usually the image that best describes the release group as a whole or the image with the best
visual quality, but is not necessarily the exact cover of the release you are tagging. This provider
is a good choice if you care more about visual quality then having an exact representation of
your release. It is also a good fallback for the Cover Art Archive provider.

6.3. Option Settings 33

https://archive.org

MusicBrainz Picard, Release v2.4.4

Sites on the whitelist

This will use images provided from whitelisted sites. See Cover art whitelist in the Style Guide
for more information.

Note: CD Baby and other whitelist sites are no longer being used by MusicBrainz for new
Cover Art.

Local Files

Load cover art from local files. The file names to load can be configured in the Local Files
provider options.

In addition to the built-in cover art providers described above, additional cover art providers can be installed
as plugins.

• Amazon: Amazon often has cover art when other sites don’t, however while this art is almost always
for the correct Artist and Album, it may not be the absolute correct cover art for the specific Release
with which you have tagged your music. Note: The Amazon cover art provider was built-in in Picard
2.1.3 and earlier versions. For later versions it needs to be installed as a separate plugin.

• fanart.tv: Uses cover art from fanart.tv, which focuses on cover art with high visual quality. This
provider provides cover art representative for the release group and not the individual release.

• TheAudioDB: Uses cover art from TheAudioDB, which focuses on cover art with high visual quality.
This provider provides cover art representative for the release group and not the individual release.

34 Chapter 6. Configuration

https://wiki.musicbrainz.org/History:Style/Relationships/URLs/Cover_art_whitelist
https://picard.musicbrainz.org/plugins/
https://fanart.tv/
https://www.theaudiodb.com/

MusicBrainz Picard, Release v2.4.4

Cover Art Archive

In this section you can decide which types of cover art you would like to download from the Cover Art
Archive, and what quality (size) you want to download. Obviously, the better the quality, the larger the size
of the files.

Download Types

When selecting the cover art image types, you can select the types to both include and exclude
from the download list. CAA images with an image type found in the “Include” list will be
downloaded and used unless they also have an image type found in the “Exclude” list. Images
with types found in the “Exclude” list will never be used. Image types not appearing in either
the “Include” or “Exclude” lists will not be considered when determining whether or not to
download and use a CAA image.

6.3. Option Settings 35

MusicBrainz Picard, Release v2.4.4

Most music players will display only one piece of cover art for the album, and most people
select Front (cover) for that.

Image Size

This identifies what size of image to download from the CAA. The options are 250px, 500px,
1200px amd full size. The fixed sizes are generated automatically from the full size image,
provided that it is greater than or equal to the fixed size being generated. The generated images
are square and padded as required if the original image is not square.

Save only one front image

This tells Picard to only save the first “front” image to a separate file with the release. If left
unchecked, all “front” images will be saved as separate files.

Download only approved images

When checked, Picard will only download images that have been approved (i.e.: the edit to add
the image has been accepted and applied). To allow using images from pending edits, leave this
option unchecked.

Use the first image type as the filename

When checked, Picard will use the type of the first image retrieved as the filename when saving
all images. If left unchecked, each file will be named according to its image type.

Note: This will not change the name used for “front” images that has been specified in the
Save cover images section of the general “Cover Art Options”.

Since Picard 1.3, you can also decide whether or not to use the image from the release group (if any) if no
front image is found for the release. In this case, the cover may not match the exact release you are tagging
(eg.: a 1979 vinyl front cover may be used in place of the Deluxe 2010 CD reissue).

36 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Local Files

In this section you can configure the file names to be used by the Local Files cover art provider. If you are
trying to collect more than one image, the naming is important.

The file names are defined using a regular expression. The default is ^(?
:cover|folder|albumart)(.*)\.(?:jpe?g|png|gif|tiff?)$ which will load files
with the name “cover”, “folder” or “albumart” and the file extension “jpg”, “png”, “gif” or “tiff” (e.g.:
“folder.jpg” or “cover.png”).

The first part of the regular expression is a non-capture group: (?:cover|folder|albumart). Items
listed in this group will not get captured and the default (Front) type will apply.

The second part of the regular expression is a group: (.*). This is the real capture, so if the file names
match any of the cover art types, they will be tagged as such.

6.3. Option Settings 37

MusicBrainz Picard, Release v2.4.4

Note: A common mistake is to add all the types into the first (non-capture) group. This means that all the
regular file names would be thrown into the Front type and cause unexpected results.

6.3.5 File Naming Options

These options determine how Picard handles files when they are saved with updated metadata.

Move files when saving

If selected, this option tells Picard to move your audio files to a new directory when it saves
them. One use for this is to keep your work organized: all untagged files are under “Directory
A”, and when Picard tags them it moves them to “Directory B”. When “Directory A” is empty,

38 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

your tagging work is done.

If this option is left unchecked, then Picard will leave the files in the same directory when they
are saved.

Note that the “Rename Files” and “Move Files” options are independent of one another. “Re-
name Files” refers to Picard changing file names, typically based on artist and track names.
“Move Files” refers to Picard moving files to new directories, based on a specified parent di-
rectory and subdirectories, typically based on album artist name and release title. However,
they both use the same “file naming string”. “Move files” uses the portion up until the last ‘/’.
“Rename files” uses the portion after the last ‘/’.

Destination directory

This specifies the destination parent directory to which files are moved when they are saved, if
the “Move files when saving” option is selected. If you use the directory “.” the files will be
moved relative to their current location. If they are already in some sort of directory structure,
this will probably not do what you want!

Move additional files

Enter patterns that match any other files you want Picard to move when saving music files
(e.g.: “Folder.jpg”, “*.png”, “*.cue”, “*.log”). Patterns are separated by spaces. When these
additional files are moved they will end up in the release directory with your music files. In
a pattern, the ‘*’ character matches zero or more characters. Other text, like “.jpg”, matches
those exact characters. Thus “*.jpg” matches “cover.jpg”, “liner.jpg”, “a.jpg”, and “.jpg”, but
not “nomatch.jpg2”.

Delete empty directories

When selected, Picard will remove directories that have become empty once a move is com-
pleted. Leave this unchecked if you want Picard to leave the source directory structure un-
changed. Checking this box may be convenient if you are using the “move files” option to
organize your work. An empty directory has no more work for you to do, and deleting the
directory makes that clear.

Rename files when saving

Select this option to let Picard change the file and directory names of your files when it saves
them, in order to make the file and directory names consistent with the new metadata.

Replace non-ASCII characters

Select this option to replace non-ASCII characters with their ASCII equivalent (e.g.: ‘á’, ‘ä’
and ‘ǎ’ with ‘a’; ‘é’, ‘ě’ and ‘ë’ with ‘e’; ‘æ’ with “ae”). More information regarding ASCII
characters can be found on Wikipedia.

Windows compatibility

This option tells Picard to replace all Windows-incompatible characters with an underscore.
This is enabled by default on Windows systems, with no option to disable.

Name files like this

An edit box that contains a formatting string that tells Picard what the new name of the file and
its containing directories should be in terms of various metadata values. The formatting string

6.3. Option Settings 39

https://en.wikipedia.org/wiki/ASCII

MusicBrainz Picard, Release v2.4.4

is in Picard’s scripting language where dark blue text starting with a ‘$’ is a function name
and names in light blue within ‘%’ signs are Picard’s tag and variable names, and is generally
referred to as a “file naming script”. Note that the use of a ‘/’ in the formatting string separates
the output directory from the file name. The formatting string is allowed to contain any number
of ‘/’ characters. Everything before the last ‘/’ is the directory location, and everything after the
last ‘/’ becomes the file’s name.

There is only one file naming script defined in a user’s settings, although it can vary from a
simple one-line script such as %album%/%title% to a very complex script using different
file naming formats based on different criteria. In all cases, the files will be saved using the text
output by the script.

Scripts are often discussed in the MetaBrainz Community Forum, and there is a thread specific
to file naming and script snippets.

Note: Any new tags set or tags modified by the file naming script will not be written to the
output files’ metadata.

40 Chapter 6. Configuration

https://community.metabrainz.org/
https://community.metabrainz.org/t/repository-for-neat-file-name-string-patterns-and-tagger-script-snippets/2786/

MusicBrainz Picard, Release v2.4.4

6.3.6 Fingerprinting Options

If you select a file or cluster in the left-hand side of the Picard screen and select “Tools → Scan”, Picard
will invoke a program to scan the files and produce a fingerprint for each that can then be used to look up
the file on MusicBrainz.

MusicBrainz currently supports only AcoustID (an Open Source acoustic fingerprinting system created by
Lukáš Lalinský) but has previously supported TRM and MusicID PUID.

Audio Fingerprinting

This allows you to select whether or not to enable acoustic fingerprinting within Picard. If
acoustic fingerprinting is diabled then all remaining options in this tab will be locked and ig-
nored.

Ignore existing AcoustID fingerprints

6.3. Option Settings 41

https://musicbrainz.org/doc/AcoustID
https://musicbrainz.org/doc/Fingerprinting
https://oxygene.sk/

MusicBrainz Picard, Release v2.4.4

When checked, any existing AcoustID fingerprint information will not be used, and the files
will be rescanned.

Fingerprint calculator

This identifies the external program on your system that will be used to calculate the AcoustID
fingerprints. By default, Picard uses the Chromaprint (fpcalc) utility which is included with the
Picard installation.

API key

The key used to access the AcoustID API to lookup and submit AcoustID fingerprints. There is
no cost to obtain an API key.

6.3.7 CD Lookup Options

This section allows you to select which CD ROM device to use by default for looking up a CD.

On Windows and Linux systems, you can override this setting by clicking on “Tools → Lookup CD. . . ” and
selecting the desired device from the list of available devices.

42 Chapter 6. Configuration

https://acoustid.org/chromaprint

MusicBrainz Picard, Release v2.4.4

Windows

On Windows, Picard has a pulldown menu listing the various CD drives it has found. Pull down the menu
and select the drive you want to use by default.

You can override this setting by clicking on “Tools → Lookup CD. . . ” and selecting the desired device from
the list of available devices.

6.3. Option Settings 43

MusicBrainz Picard, Release v2.4.4

macOS

In macOS, this option is currently a text field. The device is usually /dev/rdisk1.

If that doesn’t work, one way is to simply keep increasing the number (e.g. /dev/rdisk2) until it does
work. A less trial and error method is to open “Terminal” and type mount. The output should include a
line such as:

/dev/disk2 on /Volumes/Audio CD (local, nodev, nosuid, read-only)

You need to replace /dev/diskwith /dev/rdisk, so if, for example, it says /dev/disk2, you should
enter /dev/rdisk2 in Picard’s preferences.

Linux

In Linux, Picard has a pulldown menu like in Windows. If you’re using an older version of Picard with a
text field, you should enter the device name (typically /dev/cdrom).

You can override this setting by clicking on “Tools → Lookup CD. . . ” and selecting the desired device from
the list of available devices.

Other platforms

On other platforms, the CD Lookup option is a text field and you should enter the path to the CD drive here.

44 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

6.3.8 Plugins Options

This section allows you to manage the plugins used by Picard. You can install new plugins or enable, disable
or uninstall plugins that are currently installed. Picard provides a list of plugins that have been submitted to
the project. A list of the standard plugins is available on the plugins page on the Picard website.

There are also a number of plugins available by third-party developers. Often these are discussed on the
Community Discussion Forum so if you’re looking for a particular enhancement or functionality, a search
there might be useful. In addition, one of the MusicBrainz editors, Colby Ray maintains an unofficial list
of available plugins on a wiki page. Instructions regarding installation of third-party plugins are included in
the “Installing Third-Party Plugins” section below.

6.3. Option Settings 45

https://picard.musicbrainz.org/plugins/
https://community.metabrainz.org/
https://wiki.musicbrainz.org/User:Colbydray
https://wiki.musicbrainz.org/User:Colbydray/PicardPlugins

MusicBrainz Picard, Release v2.4.4

Plugins List

The screen displays a list of the standard plugins and any others that have been installed. Each plugin is
displayed on a separate line showing the version number and one or more status / action icons. The icons
are:

This icon indicates that the plugin is not installed. Clicking the icon will download and install
the plugin.

This icon indicates that a newer version of the plugin is available. Clicking the icon will
download and install the updated version.

This icon indicates that the plugin is installed and currently enabled. Clicking the icon will
disable the plugin, but it will still be installed.

This icon indicates that the plugin is installed but currently disabled. Clicking the icon will
enable the plugin.

This icon indicates that the plugin is currently installed. Clicking the icon will uninstall the
plugin.

When a plugin in the list is selected (i.e.: highlighted), a brief description of the plugin will be shown in the
“Details” section below the list.

46 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Note: Some plugins have their own option page which will typically appear under the “Plugins” section of
the Options.

6.3. Option Settings 47

MusicBrainz Picard, Release v2.4.4

Installing Third-Party Plugins

You can install a third-party plugin that does not appear in the plugins list, using the following steps:

1. Download the plugin and save it to a local drive.

2. Select the “Install plugin. . . ” action, located just below the list of plugins.

3. Navigate to the file you downloaded in Step 1 and select it. The file will be copied to the plugin folder,
and will appear in the list of plugins.

4. Enable the plugin if desired, and select the “Make It So!” action button at the bottom of the window.

48 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

6.3.9 User Interface Options

Show text labels under icon

If this option is disabled, the text labels under the icons in the toolbar will not be displayed,
causing the toolbar to appear a little smaller.

Allow selection of multiple directories

Enabling this option will bypass the native directory selector and use Qt’s file dialog. This may
be desirable since the native directory selector generally doesn’t allow you to select more than
one directory. This applies to the “File → Add folder” dialog. The file browser always allows
multiple directory selection.

Use built-in search rather than looking in browser

6.3. Option Settings 49

MusicBrainz Picard, Release v2.4.4

When this option is enabled the search for albums, artists or tracks will show the results in a
dialog. By default this option is disabled and Picard will open a search on MusicBrainz.org in
your default web browser.

Use advanced query syntax

This will enable advanced query syntax parsing on your searches. This only applies to the
search box at the top right of Picard, not the lookup buttons.

Show a quit confirmation dialog for unsaved changes

When this is enabled, Picard will show a dialog when you try to quit the program with unsaved
files loaded. This may help prevent accidentally losing tag changes you’ve made, but not yet
saved.

Begin browsing in the following directory

By default, Picard remembers the last directory used to load files. If you enable this option and
provide a directory, Picard will always start in the directory provided.

User interface language

By default, Picard will display in the language displayed by your operating system, however
you can override this and select a different language if needed.

Customize action toolbar

This allows you to to add, remove or rearrange the items displayed in the Action Toolbar.

50 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Colors

This section allows you to customize the various colors used in the Picard user interface. To change a color,
simply click on the color block currently displayed for the desired text condition to bring up a selection
dialog, then pick your desired color. The colors can be changed for the following text conditions:

• Errored entity: files and other elements with errors on loading or saving

• Pending entity: files and other elements queued up for processing

• Saved entity: successfully saved files

• Log view text (debug): debug messages in the Error/Debug Log

• Log view text (error): error messages in the Error/Debug Log

• Log view text (info): informational messages in the Error/Debug Log

6.3. Option Settings 51

MusicBrainz Picard, Release v2.4.4

• Log view text (warning): warning messages in the Error/Debug Log

• Tag added: newly added tags in the metadata pane

• Tag changed: changed tags in the metadata pane

• Tag removed: removed tags in the metadata pane

Top Tags

The tags specified in this option setting will always be shown in the specified order at the top of the metadata
pane (which shows the metadata of selected files or tracks). This allows you to have the most important tags
always on top of the list. Tags not listed here will be shown in alphabetical order below the top tags.

52 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

6.3.10 Scripting Options

This section allows for the management of user-defined tagging scripts.

The “Tagger Script(s)” checkbox at the top of the page allows you to completely disable all tagging scripts.
This can be useful when tracking down a problem with Picard’s configuration.

Below the checkbox are two columns showing the list of scripts in the left-hand column, with the content of
the selected script shown in the right-hand column. This section allows you to add, remove and reorder the
scripts, enable or disable individual scripts, as well as edit the currently selected script.

For additional information about scripting please see the “Scripts” and “Scripting” sections, as well as “Tags
& Variables”.

6.3. Option Settings 53

MusicBrainz Picard, Release v2.4.4

6.3.11 Advanced Options

Ignore file paths matching the following regular expression

You can specify patterns for files and directories that Picard should never load. For example, if
you set this to the regular expression \.bak$ any file ending in “.bak” will be ignored when
loading files.

Ignore hidden files

If this option is enabled then hidden files and directories will not be loaded. This also includes
any file or subdirectory inside a hidden directory.

Include sub-folders when adding files from folders

If this option is enabled Picard will load all audio files in the selected directory and all its

54 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

subdirectories. If disabled only audio files in the selected directory will be loaded.

Ignore track duration difference under this number of seconds

This specifies the number of seconds that a file can differ in length from the length in the
MusicBrainz database and still be considered to be the same. The default value is 2 seconds.

Ignore the following tracks when determining whether a release is complete

Missing tracks of the selected type (i.e.: video, pregap, data or silence) will be ignored when
determining whether a release is considered to be complete. For example, if “video” is selected
then a release with a bonus video will be marked as complete if it has all the audio tracks
matched with a file even if the video file is missing.

Tags to ignore for comparison

Tags in this list will not be considered when comparing the existing file metadata to the data
retrieved from MusicBrainz. If the only difference between the file’s metadata and the metadata
retrieved from MusicBrainz is a tag listed in this ignore list then the file will be considered
unmodified.

6.3. Option Settings 55

MusicBrainz Picard, Release v2.4.4

Network

Web Proxy

If you need a proxy to make an outside network connection you may specify one here. The
required settings are Server Address, Port, Username and Password.

Browser Integration

The browser integration allows you to load releases and recordings into Picard directly from the
MusicBrainz website. Once you have opened musicbrainz.org in your browser from Picard, the
website will show the green tagger button next to releases and recordings. Clicking on
this button will load the corresponding release or recording into Picard.

Default listening port

56 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

This identifies the default port Picard will listen on for the browser integration. If the port is not
available Picard will try to increase the port number by one until it finds a free port.

Listen only on localhost

By default Picard will limit access to the browser integration port to your local machine. Deac-
tivating this option will expose the port on your network, allowing you to request Picard to load
a specific release or recording via the network. For example, this would be used for the Picard
Barcode Scanner Android app.

Warning: Only expose the port externally when you actually need it and only on networks
you trust. Exposing application ports via the network can open potential security holes on
your system.

6.3. Option Settings 57

https://play.google.com/store/apps/details?id=org.musicbrainz.picard.barcodescanner
https://play.google.com/store/apps/details?id=org.musicbrainz.picard.barcodescanner

MusicBrainz Picard, Release v2.4.4

Matching

It is recommended for most users to leave these settings at their default values. For advanced users, these
allow you to tune the way Picard matches your files and clusters to MusicBrainz releases and tracks.

Minimal similarity for file lookups

The higher the percentage value, the more similar an individual file’s metadata must be to the
metadata from MusicBrainz for it to be matched to a release on the right-hand side.

Minimal similarity for cluster lookups

The higher the percentage value, the more similar a cluster of files from the left-hand pane must
be to a MusicBrainz release for the entire cluster to be matched to a release on the right-hand
side.

58 Chapter 6. Configuration

MusicBrainz Picard, Release v2.4.4

Minimal similarity for matching files to tracks

The higher the percentage value, the more similar an individual file’s metadata must be to the
metadata from MusicBrainz for it to be matched to a release on the right-hand side.

If you have absolutely no metadata in your current files, and you are using “Scan” to match tracks, you may
find that you need to lower the value of “Minimal similarity for matching files to tracks” in order for Picard
to match the files within a release. Otherwise you may find that Picard matches the track to a release but
then is not sure which track is correct; and leaves it in an “unmatched files” group within that release.

As a general rule, lowering the percentages may increase the chance of finding a match at the risk of false
positives and incorrect matches.

6.3. Option Settings 59

CHAPTER

SEVEN

TAGS & VARIABLES

This describes both Tags which are saved inside your music files and can be read by your music player, and
Picard variables which can be used in Picard scripts for tagging, file renaming, and in several other more
minor settings.

All tags are also available as variables, but additional variables which start with an underscore ‘_’ are not
saved as Tags within your music files (e.g. _my_tag_not_saved).

Variables are used in scripts by wrapping the name between percent ‘%’ characters (e.g. %title%).

Some variables can contain more than one value (e.g. musicbrainz_artistid), and if you want to
use only one of the values then you will need to use special script functions to access or set them. To access
all the multiple values at once, use the variable normally and Picard will combine them into a single string
separated by a semicolon and space (e.g.: “Item 1; Item 2; Item 3”).

If a tag description indicates a later version of Picard than the current official version on the downloads page,
then the tag is beta functionality which will be available in the next official release. A description of how to
gain access to these beta versions for testing can be found on the Picard downloads page on the website.

7.1 Basic Tags

The following tags are populated from MusicBrainz data for most releases, without any special Picard
settings.

All of these are also available as variables for use in Picard Scripts (for tagging, for file renaming and in
several other more minor settings) by wrapping them between percent ‘%’ symbols (e.g. %title%).

Note: Tags will not be created and will not be available as variables if there was no value retrieved for the
tag from the MusicBrainz database.

Note: Some of these tags are only supported for certain file types or tag formats. Please see the Picard Tag
Mapping section for details.

60

https://picard.musicbrainz.org/downloads/

MusicBrainz Picard, Release v2.4.4

Note: Tags that rely on information from the files (e.g.: bpm) are only available for use in the file naming
script.

acoustid_fingerprint

AcoustID Fingerprint for the track.

acoustid_id

AcoustID associated with the track.

album

Title of the release.

albumartist

Artist(s) primarily credited on the release.

albumartistsort

Release Artist’s Sort Name (e.g.: “Beatles, The”).

albumsort

Release Title’s Sort Name.

artist

Track Artist Name(s). (string)

artists

Track Artist Name(s). (multi-value) (since Picard 1.3)

artistsort

Track Artist Sort Name.

asin

Amazon Standard Identification Number - the number identifying the item on Amazon.

barcode

Release Barcode - the barcode assigned to the release.

bpm

Beats per minute of the track. Only available to the file naming script.

catalognumber

The number(s) assigned to the release by the label(s), which can often be found on the spine or
near the barcode. There may be more than one, especially when multiple labels are involved.

comment

Disambiguation Comment - the comment entered to help distinguish one release from another
(e.g.: Deluxe version with 2 bonus tracks).

7.1. Basic Tags 61

MusicBrainz Picard, Release v2.4.4

compilation

(since Picard 1.3, compatible with iTunes) 1 for Various Artist albums, otherwise 0.
(Picard 1.2 or previous) 1 if multiple track artists (including featured artists), otherwise 0.

copyright

Contain copyright message for the copyright holder of the original sound, begin with a year and
a space character.

date

Release Date (YYYY-MM-DD) - the date that the release was issued.

discid

Disc ID is the code number which MusicBrainz uses to link a physical CD to a release listing.
This is based on the table of contents (TOC) information read from the disc.

discnumber

Number of the disc in this release that contains this track.

discsubtitle

The Media Title given to a specific disc.

encodedby

Encoded by (person or organization). Only available to the file naming script.

encodersettings

Encoder Settings used. Only available to the file naming script.

isrc

International Standard Recording Code - an international standard code for uniquely identifying
sound recordings and music video recordings. See Wikipedia for more information. (since
Picard 0.12)

key

Key of the music.

label

Release Label Name(s).

language

Work lyric language as per ISO 639-3 if track relationships are enabled in Options and a related
work exists. (since Picard 0.10)

lyrics

Lyrics for the track.

media

62 Chapter 7. Tags & Variables

https://en.wikipedia.org/wiki/International_Standard_Recording_Code
https://en.wikipedia.org/wiki/ISO_639-3

MusicBrainz Picard, Release v2.4.4

Release Format (e.g.: CD). See the Release Format page on the MusicBrainz website for more
information.

musicbrainz_albumartistid

Release Artist’s MusicBrainz Identifier.

musicbrainz_albumid

Release MusicBrainz Identifier.

musicbrainz_artistid

Track Artist’s MusicBrainz Identifier.

musicbrainz_discid

Disc ID if the album was added using “Tools → Lookup CD”. (since Picard 0.12)

musicbrainz_originalalbumid

Original Release’s MusicBrainz Identifier.

musicbrainz_originalartistid

Original Track Artist’s MusicBrainz Identifier.

musicbrainz_recordingid

Recording’s MusicBrainz Identifier.

musicbrainz_releasegroupid

Release Group’s MusicBrainz Identifier.

musicbrainz_releasetrackid

Release Track MusicBrainz Identifier. (since Picard 1.3)

musicbrainz_trackid

MusicBrainz Identifier for the track.

musicbrainz_workid

MusicBrainz Identifier for the work.

originalalbum

Release Title of the earliest release in the Release Group intended for the title of the original
recording.

originalartist

Track Artist of the earliest release in the Release Group intended for the performer(s) of the
original recording.

originaldate

Release Date (YYYY-MM-DD) of the earliest release in the Release Group intended to provide,
for example, the release date of the vinyl version of what you have on CD. (Included as standard

7.1. Basic Tags 63

https://musicbrainz.org/doc/Release/Format

MusicBrainz Picard, Release v2.4.4

from Picard 0.15, and using the Original Release Date plugin if you are still using a non-NGS
version earlier than Picard 0.15)

Note: If you are storing tags in MP3 files as ID3v2.3 (which is the Windows and iTunes
compatible version) then the original date can only be stored as a year.

originalyear

Year of the original Release Date intended for release year of the original recording.

releasecountry

Country in which the release was issued.

releasestatus

Release Status indicating the “official” status of the release. Possible values include official,
promotional, bootleg, and pseudo-release.

releasetype

Release Group Type (see also _primaryreleasetype and _secondaryreleasetype)

script

The script used to write the release’s track list. The possible values are taken from the ISO
15924 standard. (since Picard 0.10)

subtitle

Used for information directly related to the contents title.

title

Track Title.

titlesort

Track Title’s Sort Name.

totaldiscs

Total number of discs in this release

totaltracks

Total tracks on this disc.

tracknumber

Track number on the disc.

website

Used for official artist website.

64 Chapter 7. Tags & Variables

https://en.wikipedia.org/wiki/ISO_15924
https://en.wikipedia.org/wiki/ISO_15924

MusicBrainz Picard, Release v2.4.4

7.2 Advanced Tags

You can make additional tags available by enabling the Advanced Relationships and the Use genres from
MusicBrainz settings in Picard.

Note: Tags will not be created and will not be available as variables if there was no value retrieved for the
tag from the MusicBrainz database.

Note: Some of these tags are only supported for certain file types or tag formats. Please see the Picard Tag
Mapping section for details.

7.2.1 Advanced Relationship Tags

If you enable tagging with Advanced Relationships, you get these extra tags:

arranger

Arranger Relationship Type (releases, recordings, works), Instrumentator Relationship Type,
Orchestrator Relationship Type (since Picard 0.10)

composer

Composer Relationship Type

composersort

Composer Relationship Type’s Sort Name

conductor

Conductor Relationship Type (releases, recordings), Chorus Master Relationship Type (re-
leases, recordings)

djmixer

Mix-DJ Relationship Type (since Picard 0.9)

engineer

Engineer Relationship Type

license

License Relationship Type (releases, recordings) (since Picard 1.0)

lyricist

Lyricist Relationship Type

mixer

Engineer Relationship Type (“Mixed By”) (since Picard 0.9)

7.2. Advanced Tags 65

MusicBrainz Picard, Release v2.4.4

performer:<type>

Performer Relationship Type (releases - vocals/instruments, recordings - vocals/instruments),
<type> can be “vocal”, “guest guitar”, “solo violin”, . . .

Orchestra Relationship Type (releases, recordings), <type> is “orchestra”

Concertmaster Relationship Type (releases, recordings), <type> is “concertmaster”

producer

Producer Relationship Type

remixer

Remixer Relationship Type

work

Work Name (since Picard 1.3)

writer

Writer Relationship Type (since Picard 1.0). Not written to most file formats automatically.
You can merge this with composers with a script like:

$copymerge(composer, writer)

7.2.2 Genre Tags

If you enable Use genres from MusicBrainz, you get:

genre

Genre information from MusicBrainz (since Picard 2.1, earlier versions used folksonomy tags)

7.3 Basic Variables

These variables are populated from MusicBrainz data for most releases, without any special Picard settings.

Note: Variables will not be created if there was no value retrieved for the variable from the MusicBrainz
database.

Note: Variables that rely on information from the files (e.g.: _bitrate) are only available for use in the file
naming script.

_absolutetracknumber

66 Chapter 7. Tags & Variables

MusicBrainz Picard, Release v2.4.4

The absolute number of this track disregarding the disc number (i.e.:
%_absolutetracknumber% of %_totalalbumtracks%). For example, this value
would be 11 for the second track on disc 2 where disc 1 has 9 tracks. (since Picard 1.3)

_albumartists

The Album’s Artists’ Name(s) (multi-value). (since Picard 1.3)

_albumartists_sort

The Album Artist’s Sort Name(s) (multi-value). (since Picard 1.3)

_artists_sort

The Artist’s Sort Name(s) (multi-value). (since Picard 1.3)

_bitrate

Approximate bitrate in kbps. Only available to the file naming script.

_bits_per_sample

Bits of data per sample. Only available to the file naming script.

_channels

Number of audio channels in the file. Only available to the file naming script.

_dirname

The name of the directory containing the file at the point of being loaded into Picard. Only
available to the file naming script. (since Picard 1.1)

_extension

The file’s extension. Only available to the file naming script. (since Picard 0.9)

_filename

The name of the file without extension. Only available to the file naming script. (since Picard
1.1)

_format

Media format of the file (e.g.: MPEG-1 Audio). Only available to the file naming script.

_length

The length of the track in format mins:secs.

_multiartist

0 if tracks on the album all have the same primary artist, 1 otherwise. (since Picard 1.3)

_primaryreleasetype

Release Group Primary type (i.e.: album, single, ep, broadcast, or other).

_rating

Rating 0-5 by MusicBrainz users.

7.3. Basic Variables 67

MusicBrainz Picard, Release v2.4.4

_releasecomment

Release disambiguation comment. (since Picard 0.15)

_releasegroup

Release Group Title which is typically the same as the Album Title, but can be different.

_releasegroupcomment

Release Group disambiguation comment.

_releaselanguage

Release Language as per ISO 639-3. (since Picard 0.10)

_sample_rate

Number of digitizing samples per second (Hz). Only available to the file naming script.

_secondaryreleasetype

Zero or more Release Group Secondary types (i.e.: audiobook, compilation, dj-mix, interview,
live, mixtape/street, remix, soundtrack, or spokenword).

_totalalbumtracks

The total number of tracks across all discs of this release.

7.4 Advanced Variables

If you enable tagging with Advanced Relationships, you get these extra variables:

Note: Variables will not be created if there was no value retrieved for the variable from the MusicBrainz
database.

_performance_attributes

List of performance attributes for the work (e.g.: “live”, “cover”, “medley”). Use $inmulti
to check for a specific type (i.e.: $if($inmulti(%_performance_attributes%,
medley), (Medley),)). (since Picard 1.3)

_recordingcomment

Recording disambiguation comment. (since Picard 0.15)

_recordingtitle

Recording title - normally the same as the Track title, but can be different.

68 Chapter 7. Tags & Variables

https://en.wikipedia.org/wiki/ISO_639-3

MusicBrainz Picard, Release v2.4.4

7.5 Classical Music Tags

With the help of plugins like “Classical Extras” or “Work & Movement” you can make use of the following
tags for tagging your classical music.

movement

Name of the movement (e.g.: “Andante con moto”).

movementnumber

Movement number in Arabic numerals (e.g.: “2”). Players explicitly supporting this tag will
often display it in Roman numerals (e.g.: “II”).

movementtotal

Total number of movements in the work (e.g.: “4”).

showmovement

Show Work & Movement: If this tag is set to “1” players supporting this tag, such as iTunes
and MusicBee, will display the work, movement number and movement name instead of the
track title. For example, the track will be displayed as “Symphony no. 5 in C minor, op. 67: II.
Andante con moto” regardless of the value of the title tag.

work

Work Name of the overall work (e.g.: “Symphony no. 5 in C minor, op. 67”).

Note: If you are using iTunes together with MP3 files you should activate the “Save iTunes compatible
grouping and work” option in order for the work to be displayed correctly.

7.6 Tags from Plugins

Plugins from Picard Plugins can add more tags. Following are some examples.

7.6.1 Last.fm Plugin

genre

Pseudo-genre based on folksonomy tags.

7.5. Classical Music Tags 69

MusicBrainz Picard, Release v2.4.4

7.6.2 Additional Artists Variables Plugin

Album Variables

_artists_album_primary_id

The ID of the primary / first album artist listed

_artists_album_primary_std

The primary / first album artist listed (standardized)

_artists_album_primary_cred

The primary / first album artist listed (as credited)

_artists_album_primary_sort

The primary / first album artist listed (sort name)

_artists_album_additional_id

The IDs of all album artists listed except for the primary / first artist, as a multi-value

_artists_album_additional_std

All album artists listed (standardized) except for the primary / first artist, separated
by strings provided from the release entry

_artists_album_additional_cred

All album artists listed (as credited) except for the primary / first artist, separated by
strings provided from the release entry

_artists_album_additional_sort

All album artists listed (sort names) except for the primary / first artist, separated by
strings provided from the release entry

_artists_album_additional_std_multi

All album artists listed (standardized) except for the primary / first artist, as a multi-
value

_artists_album_additional_cred_multi

All album artists listed (as credited) except for the primary / first artist, as a multi-
value

_artists_album_all_std

All album artists listed (standardized), separated by strings provided from the release
entry

_artists_album_all_cred

All album artists listed (as credited), separated by strings provided from the release
entry

_artists_album_all_sort

70 Chapter 7. Tags & Variables

MusicBrainz Picard, Release v2.4.4

All album artists listed (sort names), separated by strings provided from the release
entry

_artists_album_all_std_multi

All album artists listed (standardized), as a multi-value

_artists_album_all_cred_multi

All album artists listed (as credited), as a multi-value

_artists_album_all_sort_primary

The primary / first album artist listed (sort name) followed by all additional album
artists (standardized), separated by strings provided from the release entry

_artists_album_all_count

The number of artists listed as album artists

Track Variables

_artists_track_primary_id

The ID of the primary / first track artist listed

_artists_track_primary_std

The primary / first track artist listed (standardized)

_artists_track_primary_cred

The primary / first track artist listed (as credited)

_artists_track_primary_sort

The primary / first track artist listed (sort name)

_artists_track_additional_id

The IDs of all track artists listed except for the primary / first artist, as a multi-value

_artists_track_additional_std

All track artists listed (standardized) except for the primary / first artist, separated by
strings provided from the track entry

_artists_track_additional_cred

All track artists listed (as credited) except for the primary / first artist, separated by
strings provided from the track entry

_artists_track_additional_sort

All track artists listed (sort names) except for the primary / first artist, separated by
strings provided from the track entry

_artists_track_additional_std_multi

All track artists listed (standardized) except for the primary / first artist, as a multi-
value

7.6. Tags from Plugins 71

MusicBrainz Picard, Release v2.4.4

_artists_track_additional_cred_multi

All track artists listed (as credited) except for the primary / first artist, as a multi-
value

_artists_track_all_std

All track artists listed (standardized), separated by strings provided from the track
entry

_artists_track_all_cred

All track artists listed (as credited), separated by strings provided from the track
entry

_artists_track_all_sort

All track artists listed (sort names), separated by strings provided from the track
entry

_artists_track_all_std_multi

All track artists listed (standardized), as a multi-value

_artists_track_all_cred_multi

All track artists listed (as credited), as a multi-value

_artists_track_all_sort_primary

The primary / first track artist listed (sort name) followed by all additional track
artists (standardized), separated by strings provided from the track entry

_artists_track_all_count

The number of artists listed as track artists

Note: Some plugins make a large number of web service calls to get additional track-specific data such as
performer and work relationships, so loading a large number of albums and tracks could take a significant
amount of time. The time concern can be partially addressed by operating a local MusicBrainz server with
the rate limiting disabled. Please see the MusicBrainz Server project on GitHub for additional information.

7.7 Other Information

For technical details on how tags are written into files, see the Picard Tag Mapping section.

If you set new variables, these will be saved as new tags in ID3, APEv2 and VORBIS based files. For ID3
based files these will be saved to, and reloaded from, ID3 user defined text information (TXXX) frames.
They will not be saved in ASF or MP4 based files.

For ID3 based tags (i.e.: MP3 files), you can also set ID3 tags directly from your scripts by setting a special
variable starting with “_id3:”. Currently these tags are not loaded into variables when you reload the file
into Picard. (since Picard 0.9)

72 Chapter 7. Tags & Variables

https://github.com/metabrainz/musicbrainz-server

CHAPTER

EIGHT

SCRIPTING

Scripts are used to control some aspects of the operation of Picard.

There are two types of scripts used in Picard: the file naming script and tagging scripts. These are managed
from the “File Naming” and “Scripting” sections of the “Options → Options. . . ” menu.

Scripts are often discussed in the MetaBrainz Community Forum, and there is a thread specific to file naming
and script snippets.

See also:

Please refer to the section on Scripts in Extending Picard for additional details about the two types of scripts,
including how and when each of the scripts are executed.

8.1 Syntax

The syntax is derived from Foobar2000’s titleformat. There are three base elements: text, variable and func-
tion. Variables consist of alphanumeric characters enclosed in percent signs (e.g.: %artist%). Functions
start with a dollar sign and end with an argument list enclosed in parentheses (e.g.: $lower(...)).

To use parentheses or commas as-is inside a function call, you must escape them with a backslash.

8.2 Metadata Variables

See Tags & Variables for the list of the variables provided by Picard.

Picard’s variables can be either simple variables containing a single text string, or multi-value variables
containing multiple text strings. In scripts, multi-value variables are automatically converted to a single text
string by joining the values with a semicolon “;”, except when used with special multi-value functions.

Note: The full list of available scripting functions is covered in the following chapter.

73

https://community.metabrainz.org/
https://community.metabrainz.org/t/repository-for-neat-file-name-string-patterns-and-tagger-script-snippets/2786/
https://community.metabrainz.org/t/repository-for-neat-file-name-string-patterns-and-tagger-script-snippets/2786/
https://wiki.hydrogenaud.io/index.php?title=Foobar2000:Titleformat_Reference

CHAPTER

NINE

SCRIPTING FUNCTIONS

The following is a list of the Picard scripting functions grouped by function type.

9.1 Assignment Functions

These functions are used to assign (or unassign) a value to a tag or variable. The assignment scripting
functions are:

9.1.1 $copy

Usage: $copy(target,source)
Category: assignment
Implemented: Picard 0.9

Description:

Copies metadata from variable source to target. The difference from $set(target,%source%)
is that $copy(target,source) copies multi-value variables without flattening them.

Note that if the variable target already exists, it will be overwritten by source.

Example:

The following statements will yield the values for target as indicated:

$set(source,)
$set(target,This will be overwritten)
$copy(target,source) ==> ""

$set(source,one)
$copy(target,source) ==> "one"

$setmulti(source,one)
$copy(target,source) ==> "one"

$setmulti(source,one; two)
$copy(target,source) ==> "one; two"

74

MusicBrainz Picard, Release v2.4.4

9.1.2 $copymerge

Usage: $copymerge(target,source)
Category: assignment
Implemented: Picard 1.0

Description:

Merges metadata from variable source into target, removing duplicates and appending to the end, so
retaining the original ordering. Like $copy, this will also copy multi-valued variables without flattening
them. Following the operation, target will be a multi-value variable.

Note that the variable names for target and source are passed directly without enclosing them in percent
signs ‘%’.

Example:

The following statements will yield the values for target as indicated:

$set(target,)
$set(source,one)
$copymerge(target,source) ==> "one"

$set(target,zero)
$set(source,one)
$copymerge(target,source) ==> "zero; one"

$set(target,zero)
$setmulti(source,one; two)
$copymerge(target,source) ==> "zero; one; two"

$setmulti(target,zero; two)
$setmulti(source,one; two)
$copymerge(target,source) ==> "zero; two; one"

$set(target,zero; one; zero)
$set(source,one; two; three)
$copymerge(target,source) ==> "zero, one; two; three"

9.1.3 $delete

Usage: $delete(name)
Category: assignment
Implemented: Picard 2.1

Description:

Unsets the variable name and marks the tag for deletion.

9.1. Assignment Functions 75

MusicBrainz Picard, Release v2.4.4

This is similar to $unset(name) but also marks the tag for deletion. For example, running
$delete(genre) will actually remove the “genre” tag from a file when saving.

Example:

The following statements will perform the actions indicated:

$delete(genre) ==> Remove the "genre" tag from a file when saving

9.1.4 $set

Usage: $set(name,value)
Category: assignment

Description:

Sets the variable name to value. The value of a variable is available to other script functions if it is
enclosed between ‘%’ characters (e.g.: %name%). If name is another variable (e.g.: %indirect%) the
value of the variable will be used as name. This allows the creation of dynamically named variables.

Note: To create a variable which can be used for the file naming string, but which will not be written as a
tag in the file, prefix the variable name with an underscore. %something% will create a “something” tag;
%_something% will not.

Example:

The following statements will return the values indicated:

$set(comment,Testing) ==> "Testing" will be written to the "comment" tag
$set(_hidden,Testing) ==> "_hidden" variable will not be written

$set(_base,redirect)
$set(%_base%,Testing) ==> "Testing" will be written to the "redirect" tag

9.1.5 $setmulti

Usage: $setmulti(name,value[,separator])
Category: assignment
Implemented: Picard 1.0

Description:

Sets the variable name to value, using the separator (or a semicolon followed by a space “; ” if not
passed) to coerce the value back into a proper multi-valued variable. This can be used to operate on
multi-valued variables as a string, and then set them back as proper multi-valued variable.

76 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

Example:

The following statements will return the values indicated:

$setmulti(genre,$lower(%genre%)) ==> all "genre" elements in lower case
$setmulti(alpha,A; B; C) ==> 3 elements ("A", "B" and "C")
$setmulti(mixed,A:A; B:B,:) ==> 3 elements ("A", "A; B" and "B")

9.1.6 $unset

Usage: $unset(name)
Category: assignment

Description:

Unsets the variable name. The function allows for wildcards to unset certain tags (works with ‘performer:*’,
‘comment:*’, and ‘lyrics:*’).

Example:

The following would unset all performer tags:

$unset(performer:*)

9.2 Text Functions

These functions are used to manage text (e.g.: extract, replace or format) in tags or variables. The text
scripting functions are:

9.2.1 $delprefix

Usage: $delprefix(text[,prefixes])
Category: text
Implemented: Picard 1.3

Description:

Deletes the specified prefixes from the beginning of text. Any number of prefixes can be specified,
separated by commas. If no prefix is specified “A” and “The” are used by default. Note that the matching is
case-sensitive.

Example:

The following statements will return the values indicated:

9.2. Text Functions 77

MusicBrainz Picard, Release v2.4.4

$delprefix(The Beatles) ==> "Beatles"
$delprefix(The Beatles,) ==> "The Beatles"
$delprefix(THE Beatles) ==> "THE Beatles"
$delprefix(THE Beatles,THE) ==> "Beatles"
$delprefix(The Beatles,A,An) ==> "The Beatles"

9.2.2 $find

Usage: $find(haystack,needle)
Category: text
Implemented: Picard 2.3

Description:

Returns the zero-based index of the first occurrence of needle in haystack, or an empty string if
needle was not found. The comparisons are case-sensitive. If needle is blank, it will match the be-
ginning of haystack and return “0”. The function does not support wildcards.

Note: Prior to Picard 2.3.2 $find returned “-1” if needle was not found.

Example:

The following statements will return the values indicated:

$find(abcdef,a) ==> "0"
$find(abcdef,c) ==> "2"
$find(abcdef,cd) ==> "2"
$find(abcdef,g) ==> ""
$find(abcdef,B) ==> ""
$find(,a) ==> ""
$find(abcdef,) ==> "1"

9.2.3 $firstalphachar

Usage: $firstalphachar(text[,nonalpha])
Category: text
Implemented: Picard 0.12

Description:

Returns the first character of text in upper case. If text does not begin with an alphabetic character, then
nonalpha is returned instead. If nonalpha is not specified, the default value “#” will be used.

Example:

78 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

The following statements will return the values indicated:

$firstalphachar(abc) ==> "A"
$firstalphachar(123) ==> "#"
$firstalphachar(***) ==> "#"
$firstalphachar(***,) ==> ""
$firstalphachar(***,^) ==> "^"
$firstalphachar(***,non-alpha) ==> "non-alpha"

9.2.4 $firstwords

Usage: $firstwords(text,length)
Category: text
Implemented: Picard 0.12

Description:

Truncate text to length, only returning the complete words from text which fit within length char-
acters. If length is less than 0, then the value used is the number of characters in text plus length (e.g.:
$firstwords(one two three,-3) is the same as $firstwords(one two three,10)). If
length is missing or a negative number greater than the number of characters in text, the function will
return an empty string.

Example:

The following statements will return the values indicated:

$firstwords(Once upon a time,) ==> ""
$firstwords(Once upon a time,0) ==> ""
$firstwords(Once upon a time,3) ==> ""
$firstwords(Once upon a time,7) ==> "Once"
$firstwords(Once upon a time,-3) ==> "Once upon a"
$firstwords(Once upon a time,-30) ==> ""

9.2.5 $get

Usage: $get(name)
Category: text

Description:

Returns the variable name (equivalent to %name%) or an empty string if name has not been set. If name
is another variable (e.g. %indirect%) the value of the variable will be used as name. This allows the
retrieval of dynamically named variables.

Example:

The following statements will return the values indicated:

9.2. Text Functions 79

MusicBrainz Picard, Release v2.4.4

$set(foo,This is foo)
$set(bar,foo)
$get(foo) ==> "This is foo"
$get(bar) ==> "foo"
$get(%bar%) ==> "This is foo"
$get(baz) ==> "" ('baz' has not been set to a value)

9.2.6 $initials

Usage: $initials(text)
Category: text
Implemented: Picard 0.12

Description:

Returns the first character of each word in text, if it is an alphabetic character.

Example:

The following statements will return the values indicated:

$set(foo,This is a test)
$initials(%foo%) ==> "Tiat"
$initials(This is a test) ==> "Tiat"
$initials(This is a 123 test) ==> "Tiat"

9.2.7 $left

Usage: $left(text,number)
Category: text

Description:

Returns the first number characters from text. If number is less than 0, then the value used is the number
of characters in text plus number (e.g.: $right(abcd,-1) is the same as $right(abcd,3)). If
number is missing or a negative number greater than the number of characters in text, the function will
return an empty string.

Example:

The following statements will return the values indicated:

$left(,) ==> ""
$left(ABC,) ==> ""
$left(ABC,0) ==> ""
$left(ABC,2) ==> "AB"
$left(ABC,4) ==> "ABC"

(continues on next page)

80 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

(continued from previous page)

$left(ABC,-2) ==> "A"
$left(ABC,-4) ==> ""

9.2.8 $len

Usage: $len(text)
Category: text

Description:

Returns the number of characters in text.

Example:

The following statements will return the values indicated:

$set(foo,)
$len(%foo%) ==> "0"

$set(foo,ABC)
$len(%foo%) ==> "3"

$len() ==> "0"
$len(ABC) ==> "3"

9.2.9 $lower

Usage: $lower(text)
Category: text
Implemented: Picard

Description:

Returns text in lower case.

Example:

The following statement will return the value indicated:

$title(tHe houR is upOn uS) ==> "the hour is upon us"

9.2. Text Functions 81

MusicBrainz Picard, Release v2.4.4

9.2.10 $num

Usage: $num(number,length)
Category: text

Description:

Returns number formatted to length digits, where number and length are integers and length
cannot be greater than 20.

Example:

The following statements will return the values indicated:

$num(,) ==> ""
$num(,1) ==> "0"
$num(a,) ==> ""
$num(a,5) ==> "00000"
$num(123,5) ==> "00123"
$num(1.23,5) ==> "00000"
$num(123,) ==> ""
$num(123,0) ==> "123"
$num(123,1) ==> "123"
$num(123,20) ==> "00000000000000000123"
$num(123,50) ==> "00000000000000000123"
$num(123,5.5) ==> ""
$num(1.23,10) ==> "0000000000"

9.2.11 $pad

Usage: $pad(text,length,character)
Category: text

Description:

Pads the text to the length provided by adding as many copies of character as needed to the begin-
ning of the string. For the padded length to be correct, character must be exactly one character in length.
If length is less than the number of characters in text, the function will return text. If length is
missing or is not a number, the function will return an empty string.

Example:

The following statements will return the values indicated:

$pad(abc,5,+) ==> "++abc"
$pad(abc,0,+) ==> "abc"
$pad(abc,5,) ==> "abc"
$pad(abc,5,XY) ==> "XYXYabc" (note final length is incorrect)

(continues on next page)

82 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

(continued from previous page)

$pad(abc,,+) ==> ""
$pad(abc,x,+) ==> ""

9.2.12 $replace

Usage: $replace(text,search,replace)
Category: text

Description:

Replaces occurrences of search in text with replace and returns the resulting string.

Example:

The following statements will return the values indicated:

$set(foo,I like cats the best)
$replace(%foo%,cat,dog) ==> "I like dogs the best"

$set(foo,I like cats the best)
$set(bar,cat)
$replace(%foo%,%bar%,dog) ==> "I like dogs the best"

$set(foo,I like cats the best)
$set(bar,cat)
$set(baz,dog)
$replace(%foo%,%bar%,%baz%) ==> "I like dogs the best"

$replace(I like cats the best,cat,dog) ==> "I like dogs the best"
$replace(I like cats the best,pig,dog) ==> "I like cats the best"
$replace(I like cats the best,cat,) ==> "I like s the best"
$replace(Bad replace,,_) ==> "_B_a_d_ _r_e_p_l_a_c_e_"

9.2.13 $reverse

Usage: $reverse(text)
Category: text

Description:

Returns text in reverse order.

Example:

The following statements will return the values indicated:

9.2. Text Functions 83

MusicBrainz Picard, Release v2.4.4

$set(foo,abcde)
$reverse(%foo%) ==> "edcba"

$reverse(abcde) ==> "edcba"

9.2.14 $right

Usage: $right(text,number)
Category: text

Description:

Returns the last number characters from text. If number is less than 1, then the value used is the
number of characters in text plus number (e.g.: $right(abcd,0) is the same as $right(abcd,
4)). If number is missing or a negative number greater than the number of characters in text, the function
will return an empty string.

Example:

The following statements will return the values indicated:

$right(abcd,2) ==> "cd"
$right(abcd,0) ==> "cd"
$right(abcd,-1) ==> "bcd"
$right(abcd,) ==> ""
$right(abcd,-5) ==> ""

9.2.15 $rreplace

Usage: $rreplace(text,pattern,replace)
Category: text

Description:

Regular expression replace. This function will replace the matching group specified by pattern with
replace in text. For more information about regular expressions, please see the article on Wikipedia.

Example:

The following statements will return the values indicated:

$rreplace(test \(disc 1\),\\s\\\(disc \\d+\\\),) ==> "test"
$rreplace(test,[t,) ==> "test"

84 Chapter 9. Scripting Functions

https://wikipedia.org/wiki/Regular_expression

MusicBrainz Picard, Release v2.4.4

9.2.16 $rsearch

Usage: $rsearch(text,pattern)
Category: text

Description:

Regular expression search. This function will return the first matching group specified by pattern from
text. For more information about regular expressions, please see the article on Wikipedia.

Example:

The following statements will return the values indicated:

$rsearch(test \(disc 1\),\\\(disc \(\\d+\)\\\)) ==> "1"
$rsearch(test \(disc 1\),\\\(disc \\d+\\\)) ==> "(disc 1)"
$rsearch(test,x) ==> ""

9.2.17 $strip

Usage: $strip(text)
Category: text

Description:

Replaces all whitespace in text with a single space, and removes leading and trailing spaces. Whitespace
characters include multiple consecutive spaces, and various other unicode characters. Characters such as
newlines ‘\n’, tabs ‘\t’ and returns ‘\r’ are treated as spaces.

Example:

The following statements will each return “This text has been stripped.”:

$strip(This text has been stripped.)
$strip(This text has been stripped.)
$strip(This text has been stripped.)
$strip(This text has been stripped.)
$strip(This text has been stripped.)
$strip(This text has been stripped.)
$strip(This text\rhas\nbeen\tstripped.)

9.2. Text Functions 85

https://wikipedia.org/wiki/Regular_expression

MusicBrainz Picard, Release v2.4.4

9.2.18 $substr

Usage: $substr(text,start,end)
Category: text
Implemented: Picard 2.3

Description:

Returns the substring of text beginning with the character at the start index, up to (but not including)
the character at the end index. Indexes are zero-based. Negative numbers will be counted back from the
end of the string. If the start or end indexes are left blank, they will default to the start and end of the string
respectively. If the start index evaluates to a negative number (e.g.: text is “abc” and start is -10),
it will default to the start of the string. Similarly, if end index is a number greater than the number of
characters in the string, it will default to the end of the string. Invalid index values (e.g.: start greater
than end) will return an empty string.

Example:

The following statements will return the values indicated:

$substr(abcdefg) ==> "abcdefg"
$substr(abcdefg,3) ==> "defg"
$substr(abcdefg,,3) ==> "abc"
$substr(abcdefg,0,3) ==> "abc"
$substr(abcdefg,-3) ==> "efg"
$substr(abcdefg,-6,3) ==> "bc"
$substr(abcdefg,-10,3) ==> "abc"
$substr(abcdefg,3,1) ==> ""

9.2.19 $swapprefix

Usage: $swapprefix(text[,prefixes])
Category: text
Implemented: Picard 1.3 (previously as a plugin since Picard 0.13)

Description:

Moves the specified prefixes from the beginning to the end of text. Any number of prefixes can
be specified, separated by commas. If no prefix is specified “A” and “The” are used by default. Note that
the matching is case-sensitive.

Example:

If the albumartist is “Le Butcherettes”, the following statements will return the values indicated:

$swapprefix(%albumartist%) ==> "Le Butcherettes"
$swapprefix(%albumartist%,le) ==> "Le Butcherettes"

(continues on next page)

86 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

(continued from previous page)

$swapprefix(%albumartist%,L) ==> "Le Butcherettes"
$swapprefix(%albumartist%,A,An,The,Le) ==> "Butcherettes, Le"

9.2.20 $title

Usage: $title(text)
Category: text
Implemented: Picard 2.1

Description:

Returns text in title case (first character in every word capitalized).

Example:

The following statement will return the value indicated:

$title(tHe houR is upOn uS) ==> "The Hour Is Upon Us"

9.2.21 $trim

Usage: $trim(text[,character])
Category: text

Description:

Trims all leading and trailing whitespaces from text. The optional second parameter character speci-
fies the character to trim. If multiple characters are provided in character, each character will be applied
separately to the function.

Examples:

The following statements will return the values indicated:

$trim(Trimmed) ==> "Trimmed"
$trim(__Trimmed__,_) ==> "Trimmed"
$trim(x__Trimmed__y,_x) ==> "Trimmed__y"

9.2. Text Functions 87

MusicBrainz Picard, Release v2.4.4

9.2.22 $truncate

Usage: $truncate(text,length)
Category: text
Implemented: Picard 0.12

Description:

Truncate text to length. If length is less than 0, then the value used is the number of characters in
text plus length (e.g.: $truncate(abcd,-1) is the same as $truncate(abcd,3)). If length
is missing or a negative number greater than the number of characters in text, the function will return an
empty string.

Example:

The following statements will return the values indicated:

$truncate(Once upon a time,) ==> ""
$truncate(Once upon a time,0) ==> ""
$truncate(Once upon a time,3) ==> "Onc"
$truncate(Once upon a time,-3) ==> "Once upon a t"
$truncate(Once upon a time,-30) ==> ""

9.2.23 $upper

Usage: $upper(text)
Category: text

Description:

Returns text in upper case.

Example:

The following statement will return the value indicated:

$upper(This text is UPPER case) ==> "THIS TEXT IS UPPER CASE"

9.3 Multi-Value Functions

These functions are used to manage multi-value tags or variables. The multi-value scripting functions are:

88 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

9.3.1 $getmulti

Usage: $getmulti(name,index[,separator])
Category: multi-value
Implemented: Picard 2.3

Description:

Gets the element at index from the multi-value variable name. A literal value representing a multi-value
can be substituted for name, using the separator (or a semicolon followed by a space “; ” if not passed)
to coerce the value into a proper multi-value variable.

The index is zero based. If index is less than 0, then the value used is the number of elements in name
plus index (e.g.: $getmulti(%abcd%,-1) is the same as $getmulti(%abcd%,3) if %abcd% is
a multi-value variable with four elements). If index is missing, not an integer, a number greater than or
equal to the number of elements in name, or a negative number greater than the number of elements in
name, then the function will return an empty string.

Example:

The following statements will return the values indicated:

$set(foo,A; B; C)
$setmulti(bar,A; B; C)
$set(baz,1)
$getmulti(%foo%,%baz%) ==> ""
$getmulti(%foo%,0) ==> "A; B; C"
$getmulti(%foo%,-1) ==> "A; B; C"
$getmulti(%foo%,-%baz%) ==> "A; B; C"
$getmulti(%bar%,%baz%) ==> "B"
$getmulti(%bar%,0) ==> "A"
$getmulti(%bar%,-1) ==> "C"
$getmulti(%bar%,-%baz%) ==> "C"

$getmulti(A:1; B:2; C:3,1) ==> "B:2"
$getmulti(A:1; B:2; C:3,1,:) ==> "1; B"
$getmulti(A:1; B:2; C:3,10) ==> ""
$getmulti(A:1; B:2; C:3,-10) ==> ""
$getmulti(A:1; B:2; C:3,1.5) ==> ""
$getmulti(A:1; B:2; C:3,a) ==> ""

9.3. Multi-Value Functions 89

MusicBrainz Picard, Release v2.4.4

9.3.2 $join

Usage: $join(name,text[,separator])
Category: multi-value
Implemented: Picard 2.3

Description:

Joins all elements in the multi-value variable name, placing text between each element, and returns
the result as a string. A literal value representing a multi-value can be substituted for name, using the
separator (or a semicolon followed by a space “; ” if not passed) to coerce the value into a proper
multi-valued variable.

Example:

The following statements will return the values indicated:

$set(foo,First:A; Second:B)
$join(%foo%, >>) ==> "First:A; Second:B"
$join(%foo%, >> ,:) ==> "First >> A; Second >> B"

$setmulti(bar,First:A; Second:B)
$join(%bar%, >>) ==> "First:A >> Second:B"
$join(%bar%, >> ,:) ==> "First >> A; Second >> B"

$join(First:A; Second:B,) ==> "First:ASecond:B"
$join(First:A; Second:B, >>) ==> "First:A >> Second:B"
$join(First:A; Second:B, >> ,:) ==> "First >> A; Second >> B"

9.3.3 $lenmulti

Usage: $lenmulti(name[,separator])
Category: multi-value

Description:

Returns the number of elements in the multi-value variable name. A literal value representing a multi-value
can be substituted for name, using the separator (or a semicolon followed by a space “; ” if not passed)
to coerce the value into a proper multi-valued variable. If name is missing $lenmulti will return “0”. If
separator is specified but left blank (e.g. $setmulti(A; B; C,)) the function will return “1”.

Example:

The following statements will return the values indicated:

$set(foo,)
$lenmulti(%foo%) ==> "0"

(continues on next page)

90 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

(continued from previous page)

$set(foo,A; B; C)
$lenmulti(%foo%) ==> "1"

$setmulti(foo,A; B; C)
$lenmulti(%foo%) ==> "3"

$lenmulti(A; B; C) ==> "3"
$lenmulti(A:A; B:B; C:C,:) ==> "4"
$lenmulti(,) ==> "0"
$lenmulti(,:) ==> "0"
$lenmulti(A; B; C,) ==> "1"

9.3.4 $map

Usage: $map(name,code[,separator])
Category: multi-value
Implemented: Picard 2.3

Description:

Iterates over each element found in the multi-value variable name and updates the value of the element
to the value returned by code, returning the updated multi-value variable. A literal value representing a
multi-value can be substituted for name, using the separator (or a semicolon followed by a space “; ” if
not passed) to coerce the value into a proper multi-valued variable.

For each loop, the element value is first stored in the variable _loop_value and the count is stored in the
variable _loop_count. This allows the element or count value to be accessed within the code script.

Note: You cannot save the code to a variable and then pass the variable to the function as %code% because
it will be evaluated when it is assigned to the variable rather than during the loop.

Example:

The following statements will return the values indicated:

$set(foo,First:A; Second:B)
$map(%foo%,

$upper(%_loop_count%=%_loop_value%)) ==> "1=FIRST:A; SECOND:B"
$map(%foo%,

$upper(%_loop_count%=%_loop_value%),:) ==> "1=FIRST:2=A; SECOND:3=B"

$setmulti(bar,First:A; Second:B)
$map(%bar%,

$upper(%_loop_count%=%_loop_value%)) ==> "1=FIRST:A; 2=SECOND:B"
$map(%bar%,

$upper(%_loop_count%=%_loop_value%),:) ==> "1=FIRST:2=A; SECOND:3=B"

(continues on next page)

9.3. Multi-Value Functions 91

MusicBrainz Picard, Release v2.4.4

(continued from previous page)

$map(First:A; Second:B,
$upper(%_loop_count%=%_loop_value%)) ==> "1=FIRST:A; 2=SECOND:B"

9.3.5 $performer

Usage: $performer(pattern[,separator])
Category: multi-value
Implemented: Picard 0.10

Description:

Returns the performers where the performance type matches pattern separated by separator (or a
comma followed by a space “, ” if not passed). If pattern is blank, then all performers will be returned.
Note that the pattern to be matched is case-sensitive.

Example:

With the performer tags as performer:guitar = “Ann”, performer:rhythm-guitar = “Bob”
and performer:drums = “Cindy”, the following statements will return the values indicated:

$set(foo,guitar)
$performer(%foo%) ==> "Ann, Bob"

$performer(guitar) ==> "Ann, Bob"
$performer(Guitar) ==> ""
$performer(rhythm-guitar) ==> "Bob"
$performer() ==> "Ann, Bob, Cindy"
$performer(, /) ==> "Ann / Bob / Cindy"

9.3.6 $reversemulti

Usage: $reversemulti(name[,separator])
Category: multi-value
Implemented: Picard 2.3.1

Description:

Returns a copy of the multi-value variable name with the elements in reverse order. A literal value repre-
senting a multi-value can be substituted for name, using the separator (or a semicolon followed by a
space “; ” if not passed) to coerce the value into a proper multi-valued variable.

This function can be used in conjunction with the $sortmulti function to sort in descending order.

Example:

The following statements will return the values indicated:

92 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

$set(foo,A; B; C; D; E)
$reversemulti(%foo%) ==> "A; B; C; D; E"

$setmulti(bar,A; B; C; D; E)
$reversemulti(%bar%) ==> "E; D; C; B; A"

$setmulti(baz,A:A; B:B; C:C,:)
$reversemulti(%baz%) ==> "C; B; C; A; B; A"

$reversemulti(A; B; C; D; E) ==> "E; D; C; B; A"
$reversemulti(A:A; B:B; C:C,:) ==> "C:B; C:A; B:A"

9.3.7 $slice

Usage: $slice(name,start,end[,separator])
Category: multi-value
Implemented: Picard 2.3

Description:

Returns a multi-value variable containing the elements from the start index up to but not including the
end index from the multi-value variable name. A literal value representing a multi-value can be substituted
for name, using the separator (or a semicolon followed by a space “; ” if not passed) to coerce the value
into a proper multi-valued variable.

Indexes are zero based. Negative numbers will be counted back from the number of elements in the list.
If the start or end indexes are left blank, they will default to 0 and the number of elements in the list
respectively.

A typical use might be to create a multi-value variable with all artists in %artists% ex-
cept the first, which can be used to create a “feat.” list. This would look something like
$setmulti(supporting_artists,$slice(%artists%,1,)).

Example:

The following statements will return the values indicated:

$set(foo,A; B; C; D; E)
$slice(%foo%,1) ==> ""

$setmulti(foo,A; B; C; D; E)
$slice(%foo%,1) ==> "B; C; D; E"

$slice(A; B; C; D; E,1) ==> "B; C; D; E"
$slice(A; B; C; D; E,1,3) ==> "B; C"
$slice(A; B; C; D; E,,3) ==> "A; B; C"
$slice(A; B; C; D; E,1,3) ==> "B; C"
$slice(A; B; C; D; E,1,-1) ==> "B; C; D"
$slice(A; B; C; D; E,-4,4) ==> "B; C; D"

(continues on next page)

9.3. Multi-Value Functions 93

MusicBrainz Picard, Release v2.4.4

(continued from previous page)

$slice(A:A; B:B; C:C; D:D; E:E,,1,:) ==> "A"
$slice(A:A; B:B; C:C; D:D; E:E,-2,,:) ==> "D; E:E"
$slice(A:A; B:B; C:C; D:D; E:E,2,4,:) ==> "B; C:C; D"

9.3.8 $sortmulti

Usage: $sortmulti(name[,separator])
Category: multi-value
Implemented: Picard 2.3.1

Description:

Returns a copy of the multi-value variable name with the elements sorted in ascending order. A literal value
representing a multi-value can be substituted for name, using the separator (or a semicolon followed
by a space “; ” if not passed) to coerce the value into a proper multi-valued variable. If name is missing
$sortmulti will return an empty string.

Example:

The following statements will return the values indicated:

$set(foo,B; C; E; D; A)
$sortmulti(%foo%) ==> "B; C; E; D; A"

$setmulti(foo,B; C; E; D; A)
$sortmulti(%foo%) ==> "A; B; C; D; E"

$sortmulti(B; D; E; A; C) ==> "A; B; C; D; E"
$sortmulti(B:AB; D:C; E:D; A:A; C:X,:) ==> "A; C:AB; D:B:C; E:D; A:X"
$sortmulti(,) ==> ""
$sortmulti(,:) ==> ""

94 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

9.4 Mathematical Functions

These functions are used to perform arithmetic operations on tags or variables. The mathematical scripting
functions are:

9.4.1 $add

Usage: $add(x,y,*args)
Category: mathematical

Description:

Adds y to x. Can be used with an arbitrary number of arguments (i.e.: $add(x,y,z) = (x + y) + z).
Returns an empty string if an argument is missing or not an integer.

Example:

The following statements will return the values indicated:

$add(20,15) ==> "35"
$add(20,-15) ==> "5"
$add(20,14,1) ==> "35"
$add(20,10,3,2) ==> "35"
$add(20,10,3,) ==> ""
$add(20,10,3,a) ==> ""
$add(20,10,3.5) ==> ""

9.4.2 $div

Usage: $div(x,y,*args)
Category: mathematical

Description:

Divides x by y and returns the integer value (rounded down). Can be used with an arbitrary number of
arguments (i.e.: $div(x,y,z) = (x / y) / z). If an argument is empty or not an integer, the function will
return an empty string. If the second or any subsequent argument is zero, the function will return an empty
string.

Example:

The following statements will return the values indicated:

$div(10,3) ==> "3"
$div(10,-3) ==> "-4"
$div(-10,3) ==> "-4"
$div(10,3,2) ==> "1"

(continues on next page)

9.4. Mathematical Functions 95

MusicBrainz Picard, Release v2.4.4

(continued from previous page)

$div(10,-3,-2) ==> "2"
$div(10,2,1.5) ==> ""
$div(10,2,0) ==> ""
$div(10,2,x) ==> ""
$div(10,2,) ==> ""

9.4.3 $mod

Usage: $mod(x,y,*args)
Category: mathematical

Description:

Returns the remainder of x divided by y. Can be used with an arbitrary number of arguments (i.e.: $mod(x,
y,z) = (x % y) % z). If an argument is empty or not an integer, the function will return an empty string. If
the second or any subsequent argument is zero, the function will return an empty string.

Example:

The following statements will return the values indicated:

$mod(0,3) ==> "0"
$mod(10,3) ==> "1"
$mod(10,-3) ==> "-2"
$mod(-13,10) ==> "7"
$mod(13,-10) ==> "-7"
$mod(10,3,1) ==> "0"
$mod(50,17,9) ==> "7"
$mod(51,3,0) ==> ""
$mod(51,a) ==> ""
$mod(a,10) ==> ""
$mod(,10) ==> ""
$mod(10,) ==> ""
$mod(10,3.5) ==> ""

9.4.4 $mul

Usage: $mul(x,y,*args)
Category: mathematical

Description:

Multiplies x by y. Can be used with an arbitrary number of arguments (i.e.: $mul(x,y,z) = (x * y) * z).
If an argument is empty or not an integer, the function will return an empty string.

Example:

96 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

The following statements will return the values indicated:

$mul(1,2) ==> "2"
$mul(1,2,3) ==> "6"
$mul(1,2,0) ==> "0"
$mul(1,-2,3) ==> "-6"
$mul(-1,2,-3) ==> "6"
$mul(1,2,) ==> ""
$mul(1,2,x) ==> ""
$mul(1,2.5) ==> ""

9.4.5 $sub

Usage: $sub(x,y,*args)
Category: mathematical

Description:

Subtracts y from x. Can be used with an arbitrary number of arguments (i.e.: $sub(x,y,z) = (x - y) - z).
Returns an empty string if an argument is missing or not an integer.

Example:

The following statements will return the values indicated:

$sub(20,15) ==> "5"
$sub(20,-15) ==> "35"
$sub(20,14,1) ==> "5"
$sub(20,10,3,2) ==> "5"
$sub(20,10,3,) ==> ""
$sub(20,10,3,a) ==> ""
$sub(20,10,3.5) ==> ""

9.5 Conditional Functions

These functions are used to test for various conditions and take appropriate actions depending on the results
of the test. The conditional scripting functions are:

9.5.1 $and

Usage: $and(x,y,*args)
Category: conditional

Description:

9.5. Conditional Functions 97

MusicBrainz Picard, Release v2.4.4

Returns true if both x and y are not empty. Can be used with an arbitrary number of arguments. The result
is true if ALL of the arguments are not empty.

Example:

The following statements will return the values indicated:

$set(test,x)
$and(%test%,) ==> "" (False)
$and(%test%,1) ==> "1" (True)
$and(%test%,A) ==> "1" (True)
$and(%test%,$gt(4,5)) ==> "" (False)
$and(%test%,$lt(4,5)) ==> "1" (True)
$and(%test%,,) ==> "" (False)
$and(%test%,,0) ==> "" (False)
$and(%test%,,) ==> "" (False)
$and(%test%, ,) ==> "1" (True)

9.5.2 $endswith

Usage: $endswith(text,suffix)
Category: conditional
Implemented: Picard 1.4

Description:

Returns true if text ends with suffix. Note that the comparison is case-sensitive.

Example:

The statements below return the values indicated:

$endswith(The time is now,is now) ==> "1" (True)
$endswith(The time is now,is NOW) ==> "" (False)
$endswith(The time is now,) ==> "1" (True)
$endswith(,) ==> "1" (True)
$endswith(,now) ==> "" (False)

9.5.3 $eq

Usage: $eq(x,y)
Category: conditional
Implemented: Picard

Description:

Returns true if x equals y. Note that comparisons are case-sensitive.

98 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

Example:

The following statements will return the values indicated:

$eq(,a) ==> "" (False)
$eq(a,) ==> "" (False)
$eq(a,A) ==> "" (False)
$eq(a,a) ==> "1" (True)

9.5.4 $eq_all

Usage: $eq_all(x,a1,a2,*args)
Category: conditional

Description:

Returns true if x equals a1 and a2, etc. Can be used with an arbitrary number of arguments. Note that
comparisons are case-sensitive.

Functionally equivalent to $and($eq(x,a1),$eq(x,a2) ...).

Example:

The following statements will return the values indicated:

$eq_all(A,A,B,C) ==> "" (False)
$eq_all(A,a,A,A) ==> "" (False)
$eq_all(A,A,A,A) ==> "1" (True)
$eq_all(,,,) ==> "1" (True)
$eq_all(,a,) ==> "" (False)

9.5.5 $eq_any

Usage: $eq_any(x,a1,a2,*args)
Category: conditional

Description:

Returns true if x equals a1 or a2, etc. Can be used with an arbitrary number of arguments. Note that
comparisons are case-sensitive.

Functionally equivalent to $or($eq(x,a1),$eq(x,a2) ...).

Example:

The following statements will return the values indicated:

9.5. Conditional Functions 99

MusicBrainz Picard, Release v2.4.4

$eq_any(A,A,B,C) ==> "1" (True)
$eq_any(A,a,A,A) ==> "1" (True)
$eq_any(A,a,b,c) ==> "" (False)
$eq_any(,,,) ==> "1" (True)
$eq_any(,a,b,c) ==> "" (False)

9.5.6 $gt

Usage: $gt(x,y)
Category: conditional
Implemented: Picard

Description:

Returns true if x is greater than y. If an argument is missing or is not an integer, the function will return an
empty string.

Example:

The following statements will return the values indicated:

$gt(-1,0) ==> "" (False)
$gt(0,0) ==> "" (False)
$gt(1,0) ==> "1" (True)
$gt(,) ==> "" (False)
$gt(,0) ==> "" (False)
$gt(0,) ==> "" (False)
$gt(a,1) ==> "" (False)
$gt(1,a) ==> "" (False)
$gt(1,1.5) ==> "" (False)

9.5.7 $gte

Usage: $gte(x,y)
Category: conditional
Implemented: Picard

Description:

Returns true if x is greater than or equal to y. If an argument is missing or is not an integer, the function
will return an empty string.

Example:

The following statements will return the values indicated:

100 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

$gte(-1,0) ==> "" (False)
$gte(0,0) ==> "1" (True)
$gte(1,0) ==> "1" (True)
$gte(,) ==> "" (False)
$gte(,0) ==> "" (False)
$gte(0,) ==> "" (False)
$gte(a,1) ==> "" (False)
$gte(1,a) ==> "" (False)
$gte(1,1.5) ==> "" (False)

9.5.8 $if

Usage: $if(condition,then[,else])
Category: conditional

Description:

If condition is not empty it returns then, otherwise it returns else. If else is not provided, it will be
assumed to be an empty string. In addition to (or instead of) returning values, then and else can be used
to conditionally execute other functions.

Example:

The following statements will return the values indicated:

$set(foo,This is foo)
$set(bar,)
$if(%foo%,%foo%,No foo) ==> "This is foo"
$if(%bar%,%bar%,No bar) ==> "No bar"
$if(%bar%,This is bar,No bar) ==> "No bar"
$if(%bar%,This is bar,) ==> ""
$if(%bar%,This is bar) ==> ""
$if(,True,False) ==> "False"
$if(,True,False) ==> "True"
$if(,$set(value,True),$set(value,False)) ==> Sets "value" to "False"
$set(value,$if(%bar%,True,False)) ==> Sets "value" to "False"

9.5.9 $if2

Usage: $if2(a1,a2,a3,. . .)
Category: conditional

Description:

Returns the first non empty argument. Can be used with an arbitrary number of arguments.

Example:

9.5. Conditional Functions 101

MusicBrainz Picard, Release v2.4.4

The following statements will return the values indicated:

$set(foo,)
$set(bar,Something)
$if2(%foo%,%bar%,Three) ==> "Something"
$if2(,%bar%,Three) ==> "Something"
$if2(,%foo%,%bar%,Three) ==> "Something"
$if2(%foo%, ,%bar%,Three) ==> " "
$if2(%foo%.,%bar%,Three) ==> "."
$if2(%foo%,,Three) ==> "Three"
$if2(%foo%,,,) ==> ""

9.5.10 $in

Usage: $in(x,y)
Category: conditional
Implemented: Picard

Description:

Returns true, if x contains y. Note that comparisons are case-sensitive.

Example:

The following statements will return the values indicated:

$set(foo,ABCDEFG)
$set(bar,CDE)
$in(%foo%,%bar%) ==> "1" (True)
$in(ABCDE,CDE) ==> "1" (True)
$in(ABCDE,CE) ==> "" (False)
$in(ABCDE,cde) ==> "" (False)
$in(ABCDE,) ==> "1" (True)
$in(,) ==> "1" (True)

9.5.11 $inmulti

Usage: $inmulti(%x%,y)
Category: conditional
Implemented: Picard 1.0

Description:

Returns true if multi-value variable x contains exactly y as one of its values. Note that comparisons are
case-sensitive.

Example:

102 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

The following statements will return the values indicated:

$setmulti(foo,One; Two; Three)
$set(bar,Two)
$inmulti(%foo%,%bar%) ==> "1" (True)
$inmulti(%foo%,Two) ==> "1" (True)
$inmulti(%foo%,two) ==> "" (False)
$inmulti(%foo%,Once) ==> "" (False)
$inmulti(%foo%,w) ==> "" (False)
$inmulti(%foo%,) ==> "" (False)

9.5.12 $is_audio

Usage: $is_audio()
Category: conditional
Implemented: Picard 2.2

Description:

Returns true, if the track being processed is not shown as being a video.

Example:

The following statements will return the values indicated:

$is_audio() ==> "1" (True, if the track is not a video)
$is_audio() ==> "" (False, if the track is a video)

9.5.13 $is_complete

Usage: $is_complete()
Category: conditional

Description:

Returns true if every track in the album is matched to a single file.

Note: This function only works in File Naming scripts.

Example:

The following statements will return the values indicated:

$is_complete() ==> "1" (True, if all tracks have been matched)
$is_complete() ==> "" (False, if not all tracks have been matched)

9.5. Conditional Functions 103

MusicBrainz Picard, Release v2.4.4

9.5.14 $is_video

Usage: $is_video()
Category: conditional
Implemented: Picard 2.2

Description:

Returns true, if the track being processed is shown as being a video.

Example:

The following statements will return the values indicated:

$is_video() ==> "1" (True, if the track is a video)
$is_video() ==> "" (False, if the track is not a video)

9.5.15 $lt

Usage: $lt(x,y)
Category: conditional

Description:

Returns true if x is less than y. If an argument is missing or is not an integer, the function will return an
empty string.

Example:

The following statements will return the values indicated:

$lte(-1,0) ==> "1" (True)
$lte(0,0) ==> "" (False)
$lte(1,0) ==> "" (False)
$lte(,) ==> "" (False)
$lte(,0) ==> "" (False)
$lte(0,) ==> "" (False)
$lte(a,1) ==> "" (False)
$lte(1,a) ==> "" (False)
$lte(1,1.5) ==> "" (False)

104 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

9.5.16 $lte

Usage: $lte(x,y)
Category: conditional

Description:

Returns true if x is less than or equal to y. If an argument is missing or is not an integer, the function will
return an empty string.

Example:

The following statements will return the values indicated:

$lte(-1,0) ==> "1" (True)
$lte(0,0) ==> "1" (True)
$lte(1,0) ==> "" (False)
$lte(,) ==> "" (False)
$lte(,0) ==> "" (False)
$lte(0,) ==> "" (False)
$lte(a,1) ==> "" (False)
$lte(1,a) ==> "" (False)
$lte(1,1.5) ==> "" (False)

9.5.17 $ne

Usage: $ne(x,y)
Category: conditional

Description:

Returns true if x does not equal y. Note that comparisons are case-sensitive.

Example:

The following statements will return the values indicated:

$ne(,a) ==> "1" (True)
$ne(a,) ==> "1" (True)
$ne(a,A) ==> "1" (True)
$ne(a,a) ==> "" (False)

9.5. Conditional Functions 105

MusicBrainz Picard, Release v2.4.4

9.5.18 $ne_all

Usage: $ne_all(x,a1,a2,*args)
Category: conditional

Description:

Returns true if x does not equal a1 and a2, etc. Can be used with an arbitrary number of arguments. Note
that comparisons are case-sensitive.

Functionally equivalent to $and($ne(x,a1),$ne(x,a2) ...).

Example:

The following statements will return the values indicated:

$ne_all(A,A,B,C) ==> "" (False)
$ne_all(A,a,A,A) ==> "" (False)
$ne_all(A,a,a,a) ==> "1" (True)
$ne_all(,,,) ==> "" (False)
$ne_all(,a,a) ==> "1" (True)

9.5.19 $ne_any

Usage: $ne_any(x,a1,a2,*args)
Category: conditional

Description:

Returns true if x does not equal a1 or a2, etc. Can be used with an arbitrary number of arguments. Note
that comparisons are case-sensitive.

Functionally equivalent to $or($ne(x,a1),$ne(x,a2) ...).

Example:

The following statements will return the values indicated:

$ne_any(A,A,B,C) ==> "1" (True)
$ne_any(A,a,A,A) ==> "1" (True)
$ne_any(A,A,A,A) ==> "" (False)
$ne_any(,,,) ==> "" (False)
$ne_any(,a,,) ==> "1" (True)

106 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

9.5.20 $not

Usage: $not(x)
Category: conditional

Description:

Returns true if x is empty.

Example:

The following statements will return the values indicated:

$set(foo,)
$not(%foo%) ==> "1" (False)

$not(x) ==> "" (True)
$not() ==> "" (True)
$not() ==> Error

9.5.21 $or

Usage: $or(x,y,*args)
Category: conditional

Description:

Returns true if either x or y is not empty. Can be used with an arbitrary number of arguments. The result is
true if ANY of the arguments is not empty.

Example:

The following statements will return the values indicated:

$or(,) ==> "" (False)
$or(,1) ==> "1" (True)
$or(,A) ==> "1" (True)
$or(,$gt(4,5)) ==> "" (False)
$or(,$lt(4,5)) ==> "1" (True)
$or(,,) ==> "" (False)
$or(,,0) ==> "1" (True)
$or(,,) ==> "1" (True)

9.5. Conditional Functions 107

MusicBrainz Picard, Release v2.4.4

9.5.22 $startswith

Usage: $startswith(text,prefix)
Category: conditional
Implemented: Picard 1.4

Description:

Returns true if text starts with prefix. Note that the comparison is case-sensitive.

Example:

The statements below return the values indicated:

$startswith(The time is now.,The time) ==> "1" (True)
$startswith(The time is now.,The TIME) ==> "" (False)
$startswith(The time is now.,) ==> "1" (True)
$startswith(,The) ==> "" (False)
$startswith(,) ==> "1" (True)

9.6 Information Functions

These functions provide additional system or data information. The information scripting functions are:

9.6.1 $datetime

Usage: $datetime([format])
Category: information
Implemented: Picard 2.3

Description:

Returns the current date and time in the specified format, which is based on the standard Python strftime
format codes. If no format is specified the date and time will be returned in the form ‘2020-02-15 14:26:32’.
Note that any special characters such as ‘%’, ‘$’, ‘(‘, ‘)’ and ‘\’ will need to be escaped as shown in the
examples below.

Warning: Platform-specific formatting codes should be avoided to help ensure the portability of scripts
across the different platforms. These codes include: remove zero-padding (e.g.: %-d and %-m on Linux
or macOS, and their equivalent %#d and %#m on Windows); element length specifiers (e.g.: %3Y); and
hanging ‘%’ at the end of the format string.

Example:

The following statements will return the values indicated:

108 Chapter 9. Scripting Functions

https://strftime.org

MusicBrainz Picard, Release v2.4.4

$datetime() ==> "2020-02-15 14:26:32"
$datetime(\%Y-\%m-\%d \%H:\%M:\%S) ==> "2020-02-15 14:26:32"
$datetime(\%Y-\%m-\%d) ==> "2020-02-15"
$datetime(\%H:\%M:\%S) ==> "14:26:32"
$datetime(\%B \%d, \%Y) ==> "February 15, 2020"

9.6.2 $matchedtracks

Usage: $matchedtracks()
Category: information
Implemented: Picard 0.12

Description:

Returns the number of matched tracks within a release.

Note: This function only works in File Naming scripts.

Example:

The following statements will return the values indicated:

$matchedtracks() ==> "3" (if three of the tracks were matched)

9.7 Loop Functions

These functions provide the ability to repeat actions based on the contents of a multi-value variable or the
result of a conditional test. The loop scripting functions are:

9.7.1 $foreach

Usage: $foreach(name,code,separator=”; “)
Category: loop
Implemented: Picard 2.3

Description:

Iterates over each element found in the multi-value variable name, executing code during each iteration.
Before each iteration, the element value is first stored in the variable _loop_value and the count is stored
in the variable _loop_count. This allows the element or count value to be accessed within the code
script.

9.7. Loop Functions 109

MusicBrainz Picard, Release v2.4.4

A literal value representing a multi-value can be substituted for name, using the separator (or a semi-
colon followed by a space “; ” if not passed) to coerce the value into a proper multi-valued variable.

Example:

The following statements will perform the processing indicated:

$noop(Mark all listed tags for deletion from the files.)
$foreach(genre; comment; year,$delete(%_loop_value%))

$noop(Create an 'artist_count' tag with a count of all artists
listed for the track.)

$foreach(%artists%,$set(artist_count,%_loop_count%))

$noop(Create a separate tag for each artist listed for the
track as 'artist_1', 'artist_2', etc.)

$foreach(%artists%,$set(artist_%_loop_count%,%_loop_value%))

9.7.2 $while

Usage: $while(condition,code)
Category: loop
Implemented: Picard 2.3

Description:

Executes code repeatedly until condition no longer evaluates to True. For each loop, the count is stored
in the variable _loop_count. This allows the count value to be accessed within the code script.

Note: The function limits the maximum number of iterations to 1000 as a safeguard against accidentally
creating an infinite loop.

Example:

The following statement will set return to “Echo. . . echo. . . echo. . . ”:

$set(return,Echo...)$while($lt(%_loop_count%,2),$set(return,%return% echo...))

9.8 Miscellaneous Functions

The miscellaneous scripting functions are:

110 Chapter 9. Scripting Functions

MusicBrainz Picard, Release v2.4.4

9.8.1 $noop

Usage: $noop(. . .)
Category: miscellaneous

Description:

Does nothing and always returns an empty string. This is useful for comments or disabling a block of code.

Example:

The following statements will return the values indicated:

$noop(A comment.) ==> ""
$noop($set(foo,Testing...)) ==> "" (and "foo" is not set)

9.8. Miscellaneous Functions 111

CHAPTER

TEN

USING PICARD

There are four stages to using Picard to process your audio files:

10.1 Retrieving Album information

This stage identifies the album on MusicBrainz that will provide the information used for tagging the files,
and retrieves the metadata from the MusicBrainz database. There are a few different methods available,
depending on the information currently available on your system (e.g.: metadata existing in the files, or
having the source CD available).

There are basically four main methods used to retrieve album information from the MusicBrainz database.

10.1.1 Lookup CD

This is the preferred method of automatically identifying the album to retrieve, and should be used when
you have the CD available. Typically this would be used right after ripping the audio files from the CD.
When initiated, the table of contents (toc) is read from the CD and a request is sent to MusicBrainz to return
a list of the releases that match the toc. If there are any matches, then they will be listed for you to select the
one to use. If there are no matches or none of the matches are correct, you can search the database manually
for the matching album, and are given the option of attaching the toc from your CD to the selected release
for future lookup.

The steps to follow to lookup a CD are:

1. Make sure the CD is inserted in the drive, and select “Tools → Lookup CD. . . → (drive to use)”. The
CD toc will be calculated and sent to MusicBrainz, and a list of matching releases will be displayed.

112

MusicBrainz Picard, Release v2.4.4

2. Select the correct release from the list. This will load the information for the release into Picard.

A music symbol in front of a track number in the right-hand pane indicates that there has been no file
assigned to the track.

3. If there are no matches or none of the matches are correct, use the “Lookup in Browser” option to
locate the correct release. Enter the release title or artist and initiate the search. You will be provided
with a list of the releases that match your search criterion and have the same number of tracks as your

10.1. Retrieving Album information 113

MusicBrainz Picard, Release v2.4.4

CD toc.

4. Use the green arrow to load the information for a release into Picard. In addition, you can
select the release and attach the toc.

5. If none of the releases displayed are correct, you have the option to add a new release (with some
information automatically included).

114 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.4.4

10.1.2 Lookup Files

If you don’t have the CD available, and your files are grouped by album, this is the preferred method of
automatically identifying the album to retrieve. This is done by grouping the files into album clusters in
Picard and then perform the lookup. Picard will try to match the entire set of clustered files to the same
release.

The steps to follow to lookup files are:

1. Add your files using “Files → Add Files. . . ” or “Files → Add Folder. . . ”. For ease of use it is
recommended to use the internal File Browser to manage file system interactions. This is enabled
from “View → File Browser”.

2. Drag the selected directory or files to the “Unclustered Files” folder, and wait for Picard to process
the files - the names will turn from grey to black.

10.1. Retrieving Album information 115

MusicBrainz Picard, Release v2.4.4

3. Use “Tools → Cluster” to group the files into album clusters.

4. Select a clustered album and use “Tools → Lookup” to lookup the cluster. Depending on your previ-
ous metadata, the album will show up in the right-hand pane.

A music symbol in front of a track number in the right-hand pane indicates that there has been no file
assigned to the track.

116 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.4.4

If no album was retrieved, or if the album retrieved was incorrect, you may have to try a different
method such as scanning the files or a manual lookup.

10.1.3 Scan Files

If your files are not grouped into albums and you don’t have the CD available, this is the only remaining
method of automatically identifying the album to retrieve. This is done by scanning the files to obtain their
AcoustID fingerprints and then perform the lookup for the individual files by fingerprint. The album(s)
matching the files will show up in the right-hand pane based on a “best match” using the Preferred Releases
settings in the Metadata options.

The steps to follow to scan and lookup files are:

1. Add your files using “Files → Add Files. . . ” or “Files → Add Folder. . . ”. For ease of use it is
recommended to use the internal File Browser to manage file system interactions. This is enabled
from “View → File Browser”.

10.1. Retrieving Album information 117

MusicBrainz Picard, Release v2.4.4

2. Drag the selected directory or files to the “Unclustered Files” folder, and wait for Picard to process
the files - the names will turn from grey to black.

3. Select the desired files and use “Tools → Scan” to scan the files to determine their AcoustID fin-
gerprints and lookup using this information. The album(s) matching the files will show up in the

118 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.4.4

right-hand pane based on a “best match” using the Preferred Releases settings in the Metadata op-
tions.

A music symbol in front of a track number in the right-hand pane indicates that there has been no file
assigned to the track.

If no album was retrieved, or if the album retrieved was incorrect, you may have to try a different
method such as clustering the files or a browser lookup.

10.1.4 Lookup in Browser

If none of the automated methods are available, or don’t produce the desired results, you have the option of
retrieving the album information by having Picard initiate a search on the MusicBrainz website using your
web browser. There are two methods of initiating this search. The first method searches based on the tag
information from the selected files.

The steps to follow to manually lookup an album on MusicBrainz are:

1. Add your files using “Files → Add Files. . . ” or “Files → Add Folder. . . ”. For ease of use it is
recommended to use the internal File Browser to manage file system interactions. This is enabled
from “View → File Browser”.

10.1. Retrieving Album information 119

MusicBrainz Picard, Release v2.4.4

2. Drag the selected directory or files to the “Unclustered Files” folder, and wait for Picard to process
the files - the names will turn from grey to black.

3. Use “Tools → Cluster” to group the files into album clusters if you want lookup a cluster.

120 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.4.4

4. Select a file or clustered album and use “Tools → Lookup in Browser” to initiate the search in your
browser using the currently available metadata.

5. If you want to revise or refine your search criteria, make the desired changes at the bottom of the web
page and click the “Search” button to re-initiate the search.

10.1. Retrieving Album information 121

MusicBrainz Picard, Release v2.4.4

6. Use the green arrow to load the information for a release into Picard.

7. A music symbol in front of a track number in the right-hand pane indicates that there has been no file
assigned to the track.

122 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.4.4

10.1.5 Manual Lookup

The second browser search method uses manually entered information as the search criterion.

The steps to follow to manually lookup an album on MusicBrainz are:

1. Add your files using “Files → Add Files. . . ” or “Files → Add Folder. . . ”. For ease of use it is
recommended to use the internal File Browser to manage file system interactions. This is enabled
from “View → File Browser”.

2. Drag the selected directory or files to the “Unclustered Files” folder, and wait for Picard to process
the files - the names will turn from grey to black.

10.1. Retrieving Album information 123

MusicBrainz Picard, Release v2.4.4

3. Enter your search information into the search box and select the type of records to search, then click
the magnifying glass symbol to initiate the search. This will open the MusicBrainz website in your
browser.

4. Continue to drill down by clicking on the appropriate links until you get to the release that you want
to retrieve.

5. Use the green arrow to load the information for a release into Picard.

124 Chapter 10. Using Picard

https://musicbrainz.org

MusicBrainz Picard, Release v2.4.4

6. A music symbol in front of a track number in the right-hand pane indicates that there has been no file
assigned to the track.

Note: If you enter a link to the desired entry (e.g.: https://musicbrainz.org/release/
9383a6f5-9607-4a36-9c68-8663aad3592b) in the search box in Picard, the entry will be loaded
directly without opening a browser window.

10.1. Retrieving Album information 125

MusicBrainz Picard, Release v2.4.4

10.2 Matching Files to Tracks

This stage is where individual files are matched to specific tracks in the information retrieved from the
MusicBrainz database.

Once you have retrieved the desired album information into the right-hand pane, the next step is to match
the files from the left-hand pane to the corresponding track in the right-hand pane. A music symbol in front
of a track number in the right-hand pane indicates that there has been no file assigned to the track. In some
cases, Picard may have already tried to do the matching for you. If the matching wasn’t done automatically,
drag the appropriate files onto the appropriate album and track.

Depending on your previous metadata, Picard will try to guess the matching tracks. The order is green >
yellow > orange > red, where green is the best match. If you are seeing a lot of red and orange, it could
mean that Picard has guessed incorrectly, or that your files didn’t have a lot of previous metadata to work
with. If this is the case, it’s recommended to select a track and compare the “Original Values” and “New
Values” in the metadata pane. If there is an incorrect match, simply drag the track to its correct spot in the
right-hand pane.

126 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.4.4

Right-clicking an item in the track list brings up a menu of commands, including “Info”, “Open in Player”,
“Open Containing Folder”, “Search for similar tracks”, “Lookup in Browser”, “Generate AcoustID Finger-
prints”, “Save” and “Remove”. In addition, you can re-run any associated plugins or scripts against only the
selected item. Right-clicking an items in the left-hand pane will bring up a similar menu of commands.

When you select an item in the right-hand pane, the original and new metadata for the item is displayed.
Right-clicking a line in the tag list brings up a menu of commands, including “Edit”, “Add to ‘Preserved
Tags’ List”, “Remove” and “Add New Tag”, along with an option to display the changed tags first.

10.3 Setting the Cover Art

Depending on the option settings, you can change or confirm the cover art to save with a track or album.

Once the release information has been downloaded, selecting an album or track in the right-hand pane will
display both the original and new coverart for the selected item. You can easily replace the coverart image
used for the selected item by dragging the image from the file browser and dropping it on the New Cover
Art image.

10.3. Setting the Cover Art 127

MusicBrainz Picard, Release v2.4.4

Right-clicking on the images brings up a menu of options including “Show more details”, “Keep original
cover art”, and options for the way that images dropped onto the selection are processed. Selecting “Show
more details” will bring up a new window as:

128 Chapter 10. Using Picard

MusicBrainz Picard, Release v2.4.4

Double-clicking an image will open the image file in the system default program for the image type.

10.4 Saving Updated Files

This stage is where Picard updates the matched files with the metadata retrieved in the first stage, based
on the settings configured in the Options. This may also include renaming the files and placing them in a
different directory.

When you are satisfied that your files have been properly matched to tracks in the right-hand pane, select
the album you want to save in the right-hand pane and use “File → Save” to save the files. A green check
mark means the file was saved to its proper location.

10.4. Saving Updated Files 129

MusicBrainz Picard, Release v2.4.4

Once the files have been saved successfully, you can remove the album from the right-hand pane by selecting
it and using “Edit → Remove”. Note that this only removes the album from Picard and does not remove the
files themselves.

130 Chapter 10. Using Picard

CHAPTER

ELEVEN

WORK FLOW RECOMMENDATIONS

This section provides some recommended workflows for various tagging scenarios. These workflows are
based on what are believed to be best practices.

The scenarios covered include:

1. When the CD is available

2. When files are grouped by album

3. When files are not grouped but have some metadata

4. When files are not grouped and have little or no existing metadata

Note: Regardless of whether or not it’s one of the the workflows listed, it is strongly recommended that
you make a backup copy of the files being processed and initially process a copy of your music files. This
will help to ensure that Picard is properly configured (e.g.: settings, scripts, and plugins) and produces the
expected and desired results.

11.1 When the CD is available

This is perhaps the best case scenario, because it provides the greatest chance of tagging your music files
with the most accurate match from the MusicBrainz database. It is also one of the easier methods for looking
up the release.

1. Rip the CD to music files

Extract the music filed from the CD using your favorite ripping program (e.g.: Exact Audio
Copy for Windows or Whipper for Linux). The format for the output files depends on your
personal preference and the formats supported by your player. A popular format is FLAC,
which is a compressed lossless format.

2. Lookup the CD on MusicBrainz

With the CD in the drive, it can be looked up automatically using the “Tools → Lookup CD”
command. See the Lookup CD section for detailed instructions.

3. Select the correct release

131

http://exactaudiocopy.de/
http://exactaudiocopy.de/
https://github.com/whipper-team/whipper

MusicBrainz Picard, Release v2.4.4

If there is only one release that matches the disc id for your disc, it will be loaded automati-
cally. Before proceeding, please check to ensure that it properly matches your CD (e.g.: release
country, date and label, catalog number, barcode, media type, and cover art). This is especially
important if you are going to submit any information such as disc id or AcoustID fingerprints.

4. Load the files

Drag the files or folder from the browser to the “Unclustered Files” section in the left-hand
pane. You do not need to scan or cluster them.

5. Match the files to the tracks on the release

Drag the files from the left-hand pane and drop them on the release in the right-hand pane.
Check that each track on the release is associated with only one file. The release icon should
turn gold. See the Matching Files to Tracks section for details.

6. Verify the metadata and cover art

Check that the metadata and cover art image for the release and tracks are what you want.
Adjust if required. See the Setting the Cover Art section for details.

7. Save the files

Save the files using the “File → Save” command. See the Saving Updated Files section for
details.

8. Calculate and submit AcoustID fingerprints

This step is optional, but appreciated because it will help identify the files for others to look up
for tagging.

Select the album entry in the right-hand pane and calculate the AcoustID fingerprints using
“Tools → Generate AcoustID Fingerprints”. Once the fingerprints have been calculated, submit
them using “Files → Submit AcoustIDs”.

Note: AcoustID fingerprints should only be submitted after the files have been tagged with
MusicBrainz metadata, and you have verified that the files have been matched to the correct
track on the proper release.

11.2 When files are grouped by album

If the music files to be processed are already grouped into folders by album, then the process of looking
up the release in the MusicBrainz database is greatly simplified because Picard works best when processing
one album at a time.

1. Load the files

Drag the files or folder from the browser to the “Unclustered Files” section in the left-hand
pane.

2. Cluster and lookup the files

132 Chapter 11. Work Flow Recommendations

MusicBrainz Picard, Release v2.4.4

Select the files in the left-hand pane and combine them into an album cluster using the Tools
→ Cluster” command. Select the cluster in the left-hand pane and initiate the lookup using the
Tools → Lookup” command. See the Lookup Files section for details.

3. Select the correct release

If there is only one release that matches the lookup, it will be loaded automatically. Before
proceeding, please check to ensure that it properly matches your album (e.g.: release country,
date and label, catalog number, barcode, media type, and cover art). This is especially important
if you are going to submit any information such as AcoustID fingerprints.

4. Match the files to the tracks on the release

Drag the files from the left-hand pane and drop them on the release in the right-hand pane.
Check that each track on the release is associated with only one file. The release icon should
turn gold. See the Matching Files to Tracks section for details.

5. Verify the metadata and cover art

Check that the metadata and cover art image for the release and tracks are what you want.
Adjust if required. See the Setting the Cover Art section for details.

6. Save the files

Save the files using the “File → Save” command. See the Saving Updated Files section for
details.

7. Calculate and submit AcoustID fingerprints

This step is optional, but appreciated because it will help identify the files for others to look up
for tagging.

Select the album entry in the right-hand pane and calculate the AcoustID fingerprints using
“Tools → Generate AcoustID Fingerprints”. Once the fingerprints have been calculated, submit
them using “Files → Submit AcoustIDs”.

Note: AcoustID fingerprints should only be submitted after the files have been tagged with
MusicBrainz metadata, and you have verified that the files have been matched to the correct
track on the proper release.

11.3 When files are not grouped but have some metadata

In this situation, you will need to feed batches of files to Picard to process. In order to minimize the
performance impact, it is recommended to keep the batches relatively small (i.e.: approximately 200 files at
most in a single batch). Picard will try to group them into clusters based on the metadata currently existing
in the files.

Note: This workflow will likely only partially match the files to a release in each batch processed. This

11.3. When files are not grouped but have some metadata 133

MusicBrainz Picard, Release v2.4.4

means that an album may not be fully matched, tagged and renamed until multiple batches have been pro-
cessed.

1. Load the files

Drag the batch of files to process from the browser to the “Unclustered Files” section in the
left-hand pane.

2. Cluster and lookup the files

Select the files in the left-hand pane and combine them into album clusters using the Tools →
Cluster” command. Picard will attempt to cluster the files based on their existing metadata.
Select the desired cluster(s) in the left-hand pane and initiate the lookup using the Tools →
Lookup” command. See the Lookup Files section for details.

3. Match the files to the tracks on the release

Drag the files from the left-hand pane and drop them on the release in the right-hand pane.
Check that each track on the release is associated with only one file. The release icon will likely
remain silver, indicating that not all tracks have been matched to files. See the Matching Files
to Tracks section for details.

4. Verify the metadata and cover art

Check that the metadata and cover art image for the release and tracks are what you want.
Adjust if required. See the Setting the Cover Art section for details.

5. Save the files

Save the files using the “File → Save” command. See the Saving Updated Files section for
details.

Note: It is not recommended to submit AcoustID fingerprints for files matched in this way, because it is
virtually impossible to verify that your files actually match the recordings being matched.

11.4 When files are not grouped and have little or no existing meta-
data

This is perhaps the worst case scenario, because it provides the greatest chance of tagging your music files
with an incorrect match from the MusicBrainz database.

In this situation, you will need to feed batches of files to Picard to process. In order to minimize the
performance impact, it is recommended to keep the batches relatively small (i.e.: approximately 200 files at
most in a single batch). Picard will try to group them into clusters based on their AcoustID fingerprints.

Note: This workflow will likely only partially match the files to a release in each batch processed. This

134 Chapter 11. Work Flow Recommendations

MusicBrainz Picard, Release v2.4.4

means that an album may not be fully matched, tagged and renamed until multiple batches have been pro-
cessed.

1. Load the files

Drag the batch of files to process from the browser to the “Unclustered Files” section in the
left-hand pane.

2. Scan the files

Select the files in the left-hand pane and scan them using the Tools → Scan” command. Picard
will attempt to calculate the AcoustID fingerprint for each of the files and then retrieve releases
with matching recordings. See the Scan Files section for details.

3. Match the files to the tracks on the release

Drag the files from the left-hand pane and drop them on the release in the right-hand pane.
Check that each track on the release is associated with only one file. The release icon will likely
remain silver, indicating that not all tracks have been matched to files. See the Matching Files
to Tracks section for details.

4. Verify the metadata and cover art

Check that the metadata and cover art image for the release and tracks are what you want.
Adjust if required. See the Setting the Cover Art section for details.

5. Save the files

Save the files using the “File → Save” command. See the Saving Updated Files section for
details.

11.4. When files are not grouped and have little or no existing metadata 135

CHAPTER

TWELVE

OTHER PICARD TASKS

In addition to the general functionality of Picard tagging and organizing your audio files, there are some
other tasks that it can perform:

12.1 Attaching a Disc ID to a Release

Disc IDs are very useful for identifying CDs and allowing MusicBrainz to know the length of tracks on a
CD. Thus, it is very valuable to add them when submitting a new CD release or when you have a CD release
that does not have a Disc ID attached.

Note: Please do not add DiscIDs from CDs that are burned at home.

The steps to follow to submit a disc id are:

1. Make sure the CD is inserted in the drive, and select “Tools → Lookup CD. . . → (drive to use)”. The
CD toc will be calculated and sent to MusicBrainz, and a list of matching releases will be displayed.

136

MusicBrainz Picard, Release v2.4.4

2. If the target release appears in this list, the disc id has already been attached and you do not need to
do anything further. If there are no matches found or the desired target release does not appear in the
list, use the “Lookup in Browser” option to locate the correct release. Enter the release title or artist
and initiate the search. You will be provided with a list of the releases that match your search criterion
and have the same number of tracks as your CD toc.

Note: If you search by artist, use the radio button next to the artist’s name to select the desired artist.
If you click on the artist’s name link, you will not be allowed to attach the disc id to any of the releases
displayed.

3. Select the desired target release frm the list displayed by clicking the radio button next to the release,
and then click the “Attach CD TOC” button below the list of releases. This will prepare an edit to
attach the disc id to the release. Add an appropriate edit note, and submit the edit.

12.1. Attaching a Disc ID to a Release 137

MusicBrainz Picard, Release v2.4.4

4. If none of the releases displayed are correct, you have the option to add a new release (with some
information automatically included). The disc id will automatically be attached to the new release
when the edit is saved.

12.2 Submitting Acoustic Fingerprints

Acoustic fingerprints are very useful for identifying tracks and recordings, allowing them to be looked up in
the MusicBrainz database. Thus, it is very valuable to add them when you are tagging files.

Note: When using Picard to submit acoustic fingerprints, it is recommended to enable the Fingerprint
column in the table view in the right-hand pane. This is done by right-clicking the column header and
checking the box beside “Fingerprint status”. This will display an icon indicating whether the AcoustID
was calculated and whether it ready for submission (red = unsubmitted, grey = already submitted).

There are two methods for submitting acoustic fingerprints, depending on the workflow that you are using

138 Chapter 12. Other Picard Tasks

MusicBrainz Picard, Release v2.4.4

to identify the releases that you are tagging. The steps to follow to submit acoustic fingerprints for each of
the two workflows are:

12.2.1 Submitting when using Scan to identify the release

1. Load files into the clustering pane. Select the files and click the “Scan” button, or select “Tools →
Scan”.

2. If the files are matched to a track and move to the right-hand pane, they already exist in the AcoustID
database and do not need to be re-submitted. The “Submit” button will remain disabled.

12.2. Submitting Acoustic Fingerprints 139

MusicBrainz Picard, Release v2.4.4

3. If the files are not matched, or you manually move them to match to a different track they could be
submitted. The AcoustID icon for the tracks will show up in red (i.e.: unsubmitted status) and the
“Submit” button will be enabled.

4. Clicking the “Submit” button will only submit the fingerprints for the files identified in Step 3. The
AcoustID icon for the tracks will change to grey (i.e.: submitted status) and the “Submit” button will
be disabled.

140 Chapter 12. Other Picard Tasks

MusicBrainz Picard, Release v2.4.4

12.2.2 Submitting when not using Scan to identify the release

1. Make sure that the files are properly matched to tracks on a release in the right-hand pane.

2. Select the files in the right-hand pane and select “Tools → Generate AcoustID fingerprints”. This
will calculate the acoustic fingerprints for the selected files.

Note: The “Generate AcoustID fingerprints” action button can be added to the button bar by changing
the settings in the User Interface options.

12.2. Submitting Acoustic Fingerprints 141

MusicBrainz Picard, Release v2.4.4

The AcoustID icon for the tracks will show up in red (i.e.: unsubmitted status) and the “Submit”
button will be enabled.

3. Clicking the “Submit” button will submit the fingerprints for the files. The AcoustID icon for the
tracks will change to grey (i.e.: submitted status) and the “Submit” button will be disabled.

142 Chapter 12. Other Picard Tasks

CHAPTER

THIRTEEN

EXTENDING PICARD

There are two primary ways that the functionality of MusicBrainz Picard can be extended: plugins and
scripts.

Plugins can be installed / uninstalled and enabled / disabled from the Options menu. Installed plugins are
loaded during the startup of Picard, and are made available to the program.

Scripts are stored within the user settings, and are managed from the “Options → Options. . . ” menu.

13.1 Plugins

Plugins are written in Python, and are registered to the appropriate hooks. Each plugin has its own version
identifier, but also lists the plugin API versions that it supports. When loading a plugin, Picard first compares
its list of API versions to the plugin’s supported versions to ensure that the plugin will operate correctly. The
Picard API versions indicate the version of the program in which the plugin API was last updated and any
plugin APIs with which it is backwards compatible.

Hooks are connections to the various objects in Picard that call a specific type of plugin. During the normal
running of Picard, when it encounters a hook it will first retrieve a list of all plugins registered for that
specific hook, and then execute them sequentially in order based upon the priority specified when the plugin
was registered to the hook.

There are a few different types of plugins, including:

Metadata processors: These plugins can access and modify the metadata when it is loaded
from MusicBrainz. They are registered with register_album_metadata_processor() or
register_track_metadata_processor(). These are what you might call “automatic” because
they operate without any user intervention. An example is the Classical Extras plugin.

Cover art providers: These plugins provide another cover art source, and are registered with
register_cover_art_provider(). They are also “automatic” in that they load album art with-
out user intervention, although they must be enabled by the user in the Cover Art options. The Fanart.tv
plugin is an example.

Scripting function: Some plugins just provide additional scripting functions for use in “Options → Script-
ing” or the renaming script. These are registered with register_script_function(). Keep tag,
which provides the $keep() function, is an example.

143

MusicBrainz Picard, Release v2.4.4

Context menu actions: Plugins can register actions that can be activated man-
ually via the context menu. This is what the Load as non-album track plu-
gin does. Another example is Generate Cuesheet. These are registered with
register_album_action(), register_track_action(), register_file_action(),
register_cluster_action() or register_clusterlist_action().

File formats: Plugins can also provide support for new file formats not yet supported by Picard. These are
registered with register_format().

Event processors: Plugins can execute automatically based on certain event
triggers. These are registered with file_post_load_processor(),
file_post_save_processor(), file_post_addition_to_track_processor(),
file_post_removal_from_track_processor() or album_post_removal_processor().

Note that plugins are not limited to one of those areas. A single plugin could implement all of the above,
but most existing plugins focus on one.

The Plugins API provides information regarding the different plugin hooks available, along with some ex-
amples of their use. There is also a list of the available plugins that have been submitted to the MusicBrainz
Picard repository shown on the Picard website.

13.2 Scripts

There are two types of scripts used in Picard: the file naming script and tagging scripts. These are managed
from the “File Naming” and “Scripting” sections of the “Options → Options. . . ” menu. All scripts are
written using the Picard scripting language. Scripts are often discussed in the MetaBrainz Community
Forum, and there is a thread specific to file naming and script snippets.

13.2.1 File Naming Script

There is only one file naming script defined in a user’s settings, although it can vary from a simple one-line
script such as %album%/%title% to a very complex script using different file naming formats based on
different criteria. In all cases, the files will be saved using the text output by the script.

Note: Any new tags set or tags modified by the file naming script will not be written to the output files’
metadata.

13.2.2 Tagging Scripts

There can be multiple tagging scripts defined in a user’s settings. Individual scripts can be enabled or
disabled, and the order of execution of the scripts can be set. Whenever a script is run automatically (i.e.:
when an album is loaded), it is processed once for each track in the album that triggered the run. For
example, if there are two tagging scripts enabled (A and B) and an album with three tracks is loaded, the
scripts will be processed in the following order:

1. Script A Track 1;

144 Chapter 13. Extending Picard

https://picard.musicbrainz.org/plugins/
https://community.metabrainz.org/
https://community.metabrainz.org/
https://community.metabrainz.org/t/repository-for-neat-file-name-string-patterns-and-tagger-script-snippets/2786/

MusicBrainz Picard, Release v2.4.4

2. Script A Track 2;

3. Script A Track 3;

4. Script B Track 1;

5. Script B Track 2;

6. Script B Track 3.

Metadata updates are not shared between tracks, so you cannot append data from one track to a tag in another
track.

Any new tags set or tags modified by the tagging scripts will be written to the output files’ metadata, unless
the tag name begins with an underscore. These “hidden” tags are typically used as variables to hold tempo-
rary values that are used later in either the tagging or file naming scripts. Tagging scripts are run once for
each track in the data, using the metadata for that track.

Tagging scripts can also be run manually by right-clicking either an album or a track in the right-hand pane
in Picard. If run from the album entry, the script is run for each track in the album. If run from an individual
track, the script is only run for that track.

13.3 Processing Order

In order to make effective use of plugins and scripts, it is important to understand when each is processed
in relation to the others. As a general statement, plugins are always processed before scripts. Plugins of the
same type will be executed in order based upon the priority specified when the plugin was registered.

13.3.1 Startup

During program startup, plugins with the following hooks are processed, and any additional functionality
that they provide will be available immediately:

• File Formats

• Cover Art Providers

• Tagger Script Functions

• Context Menu Actions

• Option Pages

13.3. Processing Order 145

MusicBrainz Picard, Release v2.4.4

13.3.2 Loading a Release

When data gets loaded from MusicBrainz (while the album shows the “loading” status in the right-hand
pane), the following are processed:

• Metadata Processor Plugins

• Tagging Scripts

Plugins have access to the raw data loaded from MusicBrainz and are processed before scripts, in the order
of priority set when the plugin was registered.

Scripts are processed in the order set in the Options menu.

Note: Tagging scripts are always run against metadata loaded from MusicBrainz, and exactly after the data
gets loaded and before files get matched. They are one of the last steps in the loading process. Tagging
scripts do not have access to metadata stored in existing files.

13.3.3 Loading Music Files

After a file has been loaded into Picard, plugins registered with file_post_load_processor() are
executed. This could, for example, be used to load additional data for a file.

13.3.4 Adding / Removing Files

After a file has been added to a track (on the right-hand pane of Picard), plugins registered with
file_post_addition_to_track_processor() are executed.

After a file has been removed from a track (on the right-hand pane of Picard), plugins registered with
file_post_removal_from_track_processor() are executed.

13.3.5 Saving Files

When files are saved, for each file the File Naming Script is first executed to determine the destination path
and file name. Note that this script has no effect on the tag values written to the output file.

After a file has been saved, plugins registered with file_post_save_processor() are executed.
This can, for example, be used to run additional post-processing on the file or write extra data. Note that the
file’s metadata is already the newly saved metadata.

146 Chapter 13. Extending Picard

MusicBrainz Picard, Release v2.4.4

13.3.6 Removing Albums

After an album has been removed from Picard, plugins registered with
album_post_removal_processor() are executed.

13.3.7 Context Menus

Individual tagging scripts can be executed on-demand from the context menu displayed when right-clicking
on a file, album, track, cluster or cluster list.

13.3. Processing Order 147

CHAPTER

FOURTEEN

TROUBLESHOOTING

14.1 General Troubleshooting

14.1.1 Getting Help

If you have problems using Picard, please first check the following resources:

• For general usage information see the Using Picard documentation and the illustrated quick start
guide.

• Read the FAQ section for common questions and problems.

• Consult the community forums.

• Check the download page for a newer version of Picard which might solve your problem.

• If the problem is to do with a plugin, check the Picard Plugins for updated plugin versions.

14.1.2 Reporting a Bug

If you think you have found a bug please check whether you are using the latest version of Picard and
whether the bug has already been reported in the bug tracker. If you’re not sure or don’t want to look
through the existing tickets, ask on the community forums first.

If you’re still convinced you have found a new bug, open a new ticket providing the following information:

• Which version of Picard do you use? (“Affects Version” in the form)

• Which operating system do you use? (“Environment” in the form)

• What did you do when the bug occurred?

• What actually happened and what did you expect to happen?

• If you’re using plugins, which plugins do you have enabled?

148

https://picard.musicbrainz.org/docs/guide/
https://picard.musicbrainz.org/docs/guide/
https://community.metabrainz.org/c/picard
https://picard.musicbrainz.org/downloads/
https://picard.musicbrainz.org/plugins/
https://tickets.musicbrainz.org/browse/PICARD
https://tickets.musicbrainz.org/secure/CreateIssue.jspa?pid=10042&issuetype=1

MusicBrainz Picard, Release v2.4.4

14.1.3 Getting Logs

For many bugs, it helps developers to have a log from Picard. You can see the log by going to “Help → View
Log”. You can also get a full debug log (better because it contains more detailed information) by starting
Picard with -d as a command-line argument. If you’re using Windows, you can change your shortcut’s
Target (right click shortcut → Properties) to:

"C:\Program Files\MusicBrainz Picard\picard.exe" -d

Pasting this log into your forum post or bug ticket can help developers and other users to resolve your issue
more quickly.

Warning: Please remember to first remove any personal and confidential information like user id,
passwords or authorization tokens before posting or submitting any log output.

14.2 There is no coverart

There are two different problems that often fall under this topic:

14.2.1 Picard isn’t finding and downloading any cover art

No cover art providers have been enabled in the configuration settings

Confirm that the “Options → Options. . . → Cover Art” settings have at least one cover art
provider enabled. Please see the Cover Art Providers section for more information.

There is no cover art available from the selected providers

It’s possible that the selected release does not have any cover art available from the enabled
cover art providers. If a cover art image is displayed for the release on the MusicBrainz website,
it is possible that the image for the release group is being displayed, or it is being provided
through a third-party provider agreement. Sometimes this can be addressed by enabling the
“CAA Release Group” and “Whitelist” provider options.

The selected provider is not currently available

On occasion, the server providing the cover art (e.g.: archive.org) is not available, or mirror
servers have not yet been synchronized with the latest updates. In this case, you may have to
wait for a few minutes before retrying your request. Reviewing the details in Picard’s log often
provides some insight into whether or not this is the issue.

The cover art is still a pending edit

If the cover art was recently added, the edit adding the image may not have been accepted
and applied yet. You can have Picard use the cover art from pending edits by disabling the
“Download only approved images” option in the Cover Art Archives subsection of the “Options
→ Options. . . → Cover Art” settings. Please see the Cover Art Archive section for more
information.

14.2. There is no coverart 149

MusicBrainz Picard, Release v2.4.4

14.2.2 Coverart that is saved with the files isn’t displayed

Player doesn’t support embedded cover art

Check to confirm that your player supports embedded cover art images. That support is not
universal among all players. Some players support embedded images, some support images
stored as files in the directory (e.g.: “cover.jpg” or “folder.jpg”), and some support both. Picard
allows you to specify how the cover art images should be saved. Please see the Location section
of the Coverart options for details.

You should also confirm that your player supports the version of the tags being written.

See also:

For more information please see: AAC Files / AC3 Files / ID3 Files / WAVE Files

Embedded cover image too large

Even if your cover art image has been properly embedded in the file, it’s possible that your
player has trouble dealing with embedded images over a certain size. If all else fails, you might
try using an image with a smaller file size.

14.3 Tags are not updated or saved

There are typically four reasons that tags may not be written or updated when files are saved:

Saving tags has not been enabled in the configuration settings

Confirm that the “Options → Save tags” setting has been enabled. See Action Options for more
information.

Tags are being set in the file naming script

Tags created or updated in the file naming script will not be written to the output files. This
script is only used for developing the file name and directory structure for the output. If you
want to set or update a tag value in a script, it must be in a tagging script. Please see the Scripts
section for more information about the different types of scripts.

The tags begin with an underscore

Tags whose names begin with an underscore, regardless of how they are created, will not be
written to the output files. These are considered variables for use within Picard rather than tags.
Please see the Tags & Variables section for more information regarding the difference between
tags and variables.

The file type does not support writing tags

Confirm that the file type that you are writing actually supports the tags that are to be written.
Not all file types support all the tags Picard supports.

Please see the Appendix B: Tag Mapping section for details about the tags supported by various
file formats.

150 Chapter 14. Troubleshooting

MusicBrainz Picard, Release v2.4.4

14.4 Files are not being saved

There are two typical scenarios where files are not being saved:

After selecting files in the right-hand pane you see a red stop like icon

This indicates an error occurred during saving. In the majority of times people see this it is
because the files they want to save are write protected (either have the readonly flag set or
have wrong permissions). Check that the files are not write protected and that you have the
appropriate permissions before trying again.

Permission problems seem to be more common when Picard has been installed using Flatpak,
or when the files are being read from or written to a samba share on the network.

Another possibility is that the total length of the destination path and file name exceeds the
maximum length allowed by the operating system. If you have an extremely long path and file
name, try shortening it to see it it allows the file to be saved.

In the right-hand pane you see just a musical note icon in front of the tracks

That means that this is just the track data from MusicBrainz, but no file has been associated
with it. In that case the save button is disabled. Check to make sure that the files are properly
matched to the tracks before trying to save again. Please see the Matching Files to Tracks and
Saving Updated Files sections for more information.

A third possibility, although very rare, is that you are trying to set a tag with an invalid key. If the two
solutions above don’t resolve your problem, try reviewing all of the tags to be written to see if there are any
that don’t appear to be valid.

14.5 Picard just stopped working

There are typically two reasons that Picard will run very slowly or appear to be stalled:

Processing a large number of files at one time

When processing a large number of files in one batch, Picard can run into issues either due
to processing each file (e.g.: AcoustID fingerprinting) or during lookups following clustering
or fingerprinting because of all of the information requests to the MusicBrainz server API, as
well as downloading cover art. Even though Picard may still be working its way through the
backlog, the user interface may become non-responsive and appear that the program has stalled
or frozen.

The impact of processing files in large batches is exacerbated when using plugins that make
additional information request calls to the MusicBrains server API.

If you are processing a large library of files, it is generally more effective to process smaller
batches (e.g.: 200 files) at a time, first retrieving the information using a cluster and lookup
process, and then processing any remaining unmatched files using the scan process. Please see
the Retrieving Album information section for more information.

Processing files across a network connection

14.4. Files are not being saved 151

MusicBrainz Picard, Release v2.4.4

If you are processing files across a network connection, this can impact the speed at which
Picard works because of the speed difference between a network connection and a local drive.
In this case, the throughput can be improved by first copying the source files to a local drive,
process with Picard, and then move the resulting files to the network drive.

152 Chapter 14. Troubleshooting

CHAPTER

FIFTEEN

FREQUENTLY ASKED QUESTIONS

Some of the most often asked questions have been addressed in the following sections. These have been
organized into groups based on the operation being performed.

15.1 Using Picard

How do I tag files with Picard?

There is a separate section that explains the tagging process. Please see Using Picard for details.

The green “Tagger” icon disappeared from MusicBrainz.org, how do I get it back?

This icon shows up when a manual lookup is performed via Picard using “Tools → Lookup”.

Alternatively the parameter ?tport=8000 can be added to the end of almost any MusicBrainz
URL and the green tagger icons will continue to show up from then on.

I’m trying to load a release in Picard, but all I’m seeing is “Couldn’t load album errors”. What’s up?

If you get “Couldn’t load album errors” for releases in Picard, this can occur for a number of
reasons. Check the following:

1. Is the problem persistent for a given release?

Try waiting a minute or two, or even a bit longer and then try again with a right-
click, “Refresh”. Sometimes the servers are just overloaded and temporarily reject
requests.

2. Has the release been deleted from MusicBrainz?

If you are re-tagging files previously tagged with Picard, and get this error, the re-
lease has possibly been deleted. Try to right-click and use the “Lookup in browser”
option to view the release on the website. If you can’t find it, it may have been
deleted. This could be because you tagged a pending release that was voted down,
or tagged against a release that was deleted because editors decided it wasn’t a valid
release. This can happen for homebrew compilations, bad torrent or pirate rips, “ad-
vance” releases or very poorly added releases. Usually there will be an alternate
release you can tag against, which you can find by searching or doing another clus-
tered lookup from Picard. If you can’t find a replacement and believe it has been

153

MusicBrainz Picard, Release v2.4.4

deleted unfairly, submit a new release, supplying evidence of the tracklisting and as
much information as possible to prove it is genuine and it may be accepted again.

I’m using macOS, where are my network folders or drives?

These should show up in the add file and add folder dialogs, but they aren’t visible by default
in the file browser pane. If you want to see them in the file browser pane, right click in the pane
and select “show hidden files”. They should then be visible in the /Volumes folder.

15.2 File Formats

What formats does Picard support?

Picard supports the following file formats:

• MPEG-1 Audio (.mp3, .mp2, .m2a)

• MPEG-4 Audio (.m4a, .m4b, .m4p, .m4v, .mp4)

• Windows Media Audio (.wma, .wmv, .asf)

• Microsoft WAVE (.wav)

• The True Audio (.tta)

• FLAC (.flac)

• Audio Interchange File Format (.aiff, .aif, .aifc)

• Musepack (.mpc, .mp+)

• WavPack (.wv)

• OptimFROG (.ofr, .ofs)

• Monkey’s Audio (.ape)

• Tom’s lossless Audio Kompressor (.tak)

• Speex (.spx)

• Generic Ogg files (.ogg)

• Ogg FLAC (.ogg, .ogv)

• Ogg Theora (.ogg, .oga)

• Ogg Opus (.opus)

• Ogg Audio (.oga)

• Ogg Video (.ogv)

• ADTS stream / AAC (.aac)

• AC-3 (.ac3, .eac3)

• Direct Stream Digital (.dff, .dsf)

154 Chapter 15. Frequently Asked Questions

https://musicbrainz.org/doc/How_to_Add_a_Release

MusicBrainz Picard, Release v2.4.4

Note: WAVE files lack a standard for proper tagging. Picard uses ID3v2 tags to tag WAVE
files, but this is not supported by all software. For compatibility with software which does not
support ID3v2 tags in WAVE files additional RIFF INFO tags can be written to the files. RIFF
INFO has only limited support for tags and character encodings.

What formats will Picard support?

Picard is intended to eventually support all formats (including fingerprinting), but this is a com-
plex (arguably never-ending) process, and will take some time.

Which tags can Picard write to my files?

See the Tags & Variables section for information on which MusicBrainz fields that Picard writes
to tags. Picard Tag Mapping contains more technical information on how these are further
mapped into each tag format.

How to I edit several tags at once? Why is it not easier do so?

Please understand that Picard is not designed as a general purpose tag editor. Its primary goal
is to retrieve community-maintained MusicBrainz data to write into your tags. Some secondary
goals include:

• allowing rule-based customization of that data using scripts and plugins

• encouraging users to create an account and fix and update data via the MusicBrainz web-
site, thus sharing their work with the rest of the community rather than simply fixing their
tags locally.

To that end, Picard is likely to never have as much development focus on manual bulk editing of
tags as other general purpose editors (e.g.: Mp3tag, foobar2000, or even many library managers
such as iTunes, Windows Media Player, and MediaMonkey). That doesn’t mean that the team
won’t welcome patches in this area!

Having said all this, it is still possible to edit several tags at once in Picard by following the
steps:

1. Click and select several files with CTRL or SHIFT

2. Right click on one of them, then click Details. . .

3. On the popup dialog you can see the tags, with entries that denote where tags are different
across files. You can edit or add new tags here.

4. On exiting the dialog, you have changed the tags in memory. You need to click Save in
order to persist these changes to your files.

This process should work in both panes.

The built-in audio player cannot play my file. Which formats does it support?

The formats supported by the built-in audio player depend on the formats supported by your
operating system.

Windows:

15.2. File Formats 155

https://picard.musicbrainz.org/docs/mappings/
https://www.mp3tag.de/en/
https://www.foobar2000.org/

MusicBrainz Picard, Release v2.4.4

The supported formats depend on the installed codecs. Depending on the Windows
version certain codecs are pre-installed, but you can install additional codecs.

You might want to install the Directshow Filters for Ogg to add support for Ogg
Vorbis, Ogg Speex, Ogg Theora, Ogg FLAC, native FLAC, and WebM files.

See also:

Additional information is available from Microsoft’s Codecs FAQ.

Linux:

On Linux systems the player uses GStreamer which supports most common audio
formats, although some distributions might exclude some codecs due to licensing
issues. For the widest format support make sure you install all of the GStreamer
plugins available for your distribution.

I am using Fedora. Why doesn’t acoustic fingerprinting work?

Acoustic fingerprinting in Picard uses a tool called fpcalc, which is not available in Fedora.
You can get it by installing the chromaprint-toolspackage from the RPM Fusion repository.
This functionality is not contained in the main Fedora picard package because it requires the
ffmpeg package which cannot be distributed by Fedora. After enabling the “rpmfusion-free”
RPM Fusion repository, install the package using (as root):

yum install chromaprint-tools

15.3 Configuration

Where is the Picard configuration saved?

Picard saves the configuration in the file Picard.ini. Its location depends on the operating
system:

Windows:

%APPDATA%\MusicBrainz\Picard.ini

This usually will be C:\Users\YourUserName\AppData\Roaming\
MusicBrainz, where YourUserName should be replaced with your actual Win-
dows user name.

macOS, Linux and other Unix like systems:

$HOME/.config/MusicBrainz/Picard.ini

I tagged a file in Picard, but iTunes is not seeing the tags!

First, you need to force iTunes to re-read the information from your tags and update its library.
This is discussed in the iTunes Guide.

Additionally, iTunes has a known bug in its ID3v2.4 implementation, which makes it unable to
read such tags if they also contain embedded cover art. As a work-around, you can configure
Picard to write ID3v2.3 tags.

156 Chapter 15. Frequently Asked Questions

https://xiph.org/dshow/downloads/
https://support.microsoft.com/en-us/help/15070/windows-media-player-codecs-frequently-asked-questions
https://rpmfusion.org/
https://fedoraproject.org/wiki/Forbidden_items
https://rpmfusion.org/Configuration
https://rpmfusion.org/Configuration
https://musicbrainz.org/doc/iTunes_Guide

MusicBrainz Picard, Release v2.4.4

My tags are truncated to 30 characters in Windows Media Player!

Prior to version 0.14, Picard’s default settings were to write ID3v2.4 and ID3v1 tags to files.
WMP can’t read ID3v2.4, so it falls back to ID3v1 which has a limitation of 30 characters per
title. To solve this on versions prior to 0.14, configure Picard to write ID3v2.3 tags instead.

Starting with version 0.14, the default settings have been changed to ID3v2.3 and this should
no longer be an issue.

How do I tell Picard which browser to use?

On Windows, macOS, GNOME and KDE, Picard uses the default browser that has been con-
figured for the system. On other systems, you can use the BROWSER environment variable.

For example:

export BROWSER="firefox '%s' &"

Another approach that works in some GNU/Linux systems is the following command:

sudo update-alternatives --config x-www-browser

This should present you with a list of existing browsers in your system, allowing you to select
the one to use by default.

15.3. Configuration 157

CHAPTER

SIXTEEN

APPENDICES

16.1 Appendix A: Plugins API

16.1.1 Plugin Metadata

Each plugin must provide some metadata as variables. Those variables should be placed at the top of the
file.

PLUGIN_NAME = "Example plugin"
PLUGIN_AUTHOR = "This authors name"
PLUGIN_DESCRIPTION = "This plugin is an example"
PLUGIN_VERSION = '0.1'
PLUGIN_API_VERSIONS = ['2.1', '2.2']
PLUGIN_LICENSE = "GPL-2.0-or-later"
PLUGIN_LICENSE_URL = "https://www.gnu.org/licenses/gpl-2.0.html"

Variables explanation:

• PLUGIN_DESCRIPTION should be as simple as possible, while still describing the main function.

• PLUGIN_VERSION should be filled with the version of Plugin. Plugin versions should be in the
format x.y.z (e.g.: “1.0” or “2.12.4”). It is recommended that you use Semantic Versioning.

• PLUGIN_API_VERSIONS should be set to the versions of Picard this plugin to run with. New
Picard versions will usually support older plugin API versions, but on breaking changes support for
older plugin versions can be dropped. Versions available for Picard 2 are “2.0”, “2.1” and “2.2”.

• PLUGIN_LICENSE should be set with the license name of the plugin. If possible use one of the
license names from the SPDX License List, but you are welcomed to use another licnese if the one
you chose is not available in the list.

• PLUGIN_LICENSE_URL should be set to a URL pointing to the full license text.

158

https://semver.org/
https://spdx.org/licenses/

MusicBrainz Picard, Release v2.4.4

16.1.2 Metadata Processors

MusicBrainz metadata can be post-processed at two levels, album and track. The types of the arguments
passed to the processor functions in the following examples are as follows:

• album: picard.album.Album

• metadata: picard.metadata.Metadata

• release: dict with release data from MusicBrainz JSON web service

• track: dict with track data from MusicBrainz JSON web service

Album metadata example:

PLUGIN_NAME = "Disc Numbers"
PLUGIN_AUTHOR = "Lukas Lalinsky"
PLUGIN_DESCRIPTION = "Moves disc numbers from album titles to tags."

from picard.metadata import register_album_metadata_processor
import re

def remove_discnumbers(tagger, metadata, release):
matches = re.search(r"\(disc (\d+)\)", metadata["album"])
if matches:

metadata["discnumber"] = matches.group(1)
metadata["album"] = re.sub(r"\(disc \d+\)", "", metadata["album"])

register_album_metadata_processor(remove_discnumbers)

Track metadata example:

PLUGIN_NAME = "Feat. Artists"
PLUGIN_AUTHOR = "Lukas Lalinsky"
PLUGIN_DESCRIPTION = "Removes feat. artists from track titles."

from picard.metadata import register_track_metadata_processor
import re

def remove_featartists(tagger, metadata, track, release):
metadata["title"] = re.sub(r"\(feat. [^)]*\)", "", metadata["title"])

register_track_metadata_processor(remove_featartists)

16.1. Appendix A: Plugins API 159

MusicBrainz Picard, Release v2.4.4

16.1.3 Event Hooks

Plugins can register themselves to listen for different events. Currently the following event hooks are avail-
able:

file_post_load_processor(file)

This hook is called after a file has been loaded into Picard. This could for example be used to load additional
data for a file. Usage:

from picard.file import register_file_post_load_processor

def file_post_load_processor(file):
pass

register_file_post_load_processor(file_post_load_processor)

file_post_save_processor(file)

This hook is called after a file has been saved. This can for example be used to run additional post-processing
on the file or write extra data. Note that the file’s metadata is already the newly saved metadata. Usage:

from picard.file import register_file_post_save_processor

def file_post_save_processor(file):
pass

register_file_post_save_processor(file_post_save_processor)

file_post_addition_to_track_processor(track, file)

This hook is called after a file has been added to a track (on the right-hand pane of Picard).

from picard.file import register_file_post_addition_to_track_processor

def file_post_addition_to_track_processor(track, file):
pass

register_file_post_addition_to_track_processor(file_post_addition_to_track_
→˓processor)

160 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

file_post_removal_from_track_processor(track, file)

This hook is called after a file has been removed from a track (on the right-hand pane of Picard).

from picard.file import register_file_post_removal_from_track_processor

def file_post_removal_from_track_processor(track, file):
pass

register_file_post_removal_from_track_processor(file_post_removal_from_track_
→˓processor)

album_post_removal_processor(album)

This hook is called after an album has been removed from Picard.

from picard.album import register_album_post_removal_processor

def album_post_removal_processor(album):
pass

register_album_post_removal_processor(album_post_removal_processor)

Note: Event hooks have been available since API version 2.2.

16.1.4 File Formats

Plugins can extend Picard with support for additional file formats. See the existing file format implementa-
tions for details on how to implement the _load and _save methods. Example:

PLUGIN_NAME = "..."
PLUGIN_AUTHOR = "..."
PLUGIN_DESCRIPTION = "..."
PLUGIN_VERSION = '...'
PLUGIN_API_VERSIONS = ['...']
PLUGIN_LICENSE = "..."
PLUGIN_LICENSE_URL = "..."

from picard.file import File
from picard.formats import register_format
from picard.metadata import Metadata

class MyFile(File):
EXTENSIONS = [".foo"]
NAME = "Foo Audio"

def _load(self, filename):

(continues on next page)

16.1. Appendix A: Plugins API 161

https://github.com/metabrainz/picard/tree/master/picard/formats
https://github.com/metabrainz/picard/tree/master/picard/formats

MusicBrainz Picard, Release v2.4.4

(continued from previous page)

metadata = Metadata()
Implement loading and parsing the file here.
This method is supposed to return a Metadata instance filled
with all the metadata read from the file.
metadata['~format'] = self.NAME
return metadata

def _save(self, filename, metadata):
Implement saving the metadata to the file here.
pass

register_format(MyFile)

16.1.5 Tagger Script Functions

To define new tagger script functions use register_script_function(function,
name=None) from the picard.script module. parser is an instance of picard.script.
ScriptParser, and the rest of the arguments passed to it are the arguments from the function call in the
tagger script. Example:

PLUGIN_NAME = "Initials"
PLUGIN_AUTHOR = "Lukas Lalinsky"
PLUGIN_DESCRIPTION = "Provides tagger script function $initials(text)."
PLUGIN_VERSION = '0.1'
PLUGIN_API_VERSIONS = ['2.0']
PLUGIN_LICENSE = "GPL-2.0"
PLUGIN_LICENSE_URL = "https://www.gnu.org/licenses/gpl-2.0.txt"

from picard.script import register_script_function

def initials(parser, text):
return "".join(a[:1] for a in text.split(" ") if a[:1].isalpha())

register_script_function(initials)

register_script_function supports two optional arguments:

• eval_args: If this is False, the arguments will not be evaluated before being passed to function.

• check_argcount: If this is False the number of arguments passed to the function will not be verified.

The default value for both arguments is True.

162 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.1.6 Context Menu Actions

Right-click context menu actions can be added to albums, tracks and files in “Unmatched Files”, “Clusters”
and the “ClusterList” (parent folder of Clusters). Example:

PLUGIN_NAME = u'Remove Perfect Albums'
PLUGIN_AUTHOR = u'ichneumon, hrglgrmpf'
PLUGIN_DESCRIPTION = u'''Remove all perfectly matched albums from the
→˓selection.'''
PLUGIN_VERSION = '0.2'
PLUGIN_API_VERSIONS = ['0.15.1']
PLUGIN_LICENSE = "GPL-2.0"
PLUGIN_LICENSE_URL = "https://www.gnu.org/licenses/gpl-2.0.txt"

from picard.album import Album
from picard.ui.itemviews import BaseAction, register_album_action

class RemovePerfectAlbums(BaseAction):
NAME = 'Remove perfect albums'

def callback(self, objs):
for album in objs:

if isinstance(album, Album) and album.is_complete()\
and album.get_num_unmatched_files() == 0\
and album.get_num_matched_tracks() == len(list(album.

→˓iterfiles()))\
and album.get_num_unsaved_files() == 0 and album.loaded ==

→˓True:
self.tagger.remove_album(album)

register_album_action(RemovePerfectAlbums())

Use register_x_action where ‘x’ is “album”, “track”, “file”, “cluster” or “clusterlist”.

16.1. Appendix A: Plugins API 163

MusicBrainz Picard, Release v2.4.4

16.2 Appendix B: Tag Mapping

The following is a mapping between Picard internal tag names and those used by various tagging formats.
The mapping is also available as a table and a spreadsheet.

16.2.1 AcoustID

Internal Name acoustid_id
ID3v2 TXXX:Acoustid Id
Vorbis ACOUSTID_ID
APEv2 ACOUSTID_ID
iTunes MP4 ----:com.apple.iTunes:Acoustid Id
ASF/Windows Media Acoustid/Id
RIFF INFO n/a

16.2.2 AcoustID Fingerprint

Internal Name acoustid_fingerprint
ID3v2 TXXX:Acoustid Fingerprint
Vorbis ACOUSTID_FINGERPRINT
APEv2 ACOUSTID_FINGERPRINT
iTunes MP4 ----:com.apple.iTunes:Acoustid Fingerprint
ASF/Windows Media Acoustid/Fingerprint
RIFF INFO n/a

16.2.3 Album

Internal Name album
ID3v2 TALB
Vorbis ALBUM
APEv2 Album
iTunes MP4 ©alb
ASF/Windows Media WM/AlbumTitle
RIFF INFO IPRD

164 Chapter 16. Appendices

https://picard-docs.musicbrainz.org/downloads/MusicBrainz_Picard_Tag_Map.html
https://picard-docs.musicbrainz.org/downloads/MusicBrainz_Picard_Tag_Map.xlsx

MusicBrainz Picard, Release v2.4.4

16.2.4 Album Artist

Internal Name albumartist
ID3v2 TPE2
Vorbis ALBUMARTIST
APEv2 Album Artist
iTunes MP4 aART
ASF/Windows Media WM/AlbumArtist
RIFF INFO n/a

16.2.5 Album Artist Sort Order

Internal Name albumartistsort
ID3v2 TSO2 (Picard>=1.2) TXXX:ALBUMARTISTSORT (Picard<=1.1)
Vorbis ALBUMARTISTSORT
APEv2 ALBUMARTISTSORT
iTunes MP4 soaa
ASF/Windows Media WM/AlbumArtistSortOrder
RIFF INFO n/a

16.2.6 Album Sort Order [4]

Internal Name albumsort
ID3v2 TSOA
Vorbis ALBUMSORT
APEv2 ALBUMSORT
iTunes MP4 soal
ASF/Windows Media WM/AlbumSortOrder
RIFF INFO n/a

16.2.7 Arranger

Internal Name arranger
ID3v2 TIPL:arranger (ID3v2.4) IPLS:arranger (ID3v2.3)
Vorbis ARRANGER
APEv2 Arranger
iTunes MP4 n/a
ASF/Windows Media n/a
RIFF INFO n/a

16.2. Appendix B: Tag Mapping 165

MusicBrainz Picard, Release v2.4.4

16.2.8 Artist

Internal Name artist
ID3v2 TPE1
Vorbis ARTIST
APEv2 Artist
iTunes MP4 ©ART
ASF/Windows Media Author
RIFF INFO IART

16.2.9 Artist Sort Order

Internal Name artistsort
ID3v2 TSOP
Vorbis ARTISTSORT
APEv2 ARTISTSORT
iTunes MP4 soar
ASF/Windows Media WM/ArtistSortOrder
RIFF INFO n/a

16.2.10 Artists

Internal Name artists
ID3v2 TXXX:Artists
Vorbis ARTISTS
APEv2 Artists
iTunes MP4 ----:com.apple.iTunes:ARTISTS
ASF/Windows Media WM/ARTISTS
RIFF INFO n/a

16.2.11 ASIN

Internal Name asin
ID3v2 TXXX:ASIN
Vorbis ASIN
APEv2 ASIN
iTunes MP4 ----:com.apple.iTunes:ASIN
ASF/Windows Media ASIN
RIFF INFO n/a

166 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.12 Barcode

Internal Name barcode
ID3v2 TXXX:BARCODE
Vorbis BARCODE
APEv2 Barcode
iTunes MP4 ----:com.apple.iTunes:BARCODE
ASF/Windows Media WM/Barcode
RIFF INFO n/a

16.2.13 BPM [4]

Internal Name bpm
ID3v2 TBPM
Vorbis BPM
APEv2 BPM
iTunes MP4 tmpo
ASF/Windows Media WM/BeatsPerMinute
RIFF INFO n/a

16.2.14 Catalog Number

Internal Name catalognumber
ID3v2 TXXX:CATALOGNUMBER
Vorbis CATALOGNUMBER
APEv2 CatalogNumber
iTunes MP4 ----:com.apple.iTunes:CATALOGNUMBER
ASF/Windows Media WM/CatalogNo
RIFF INFO n/a

16.2.15 Comment [4]

Internal Name comment:description
ID3v2 COMM:description
Vorbis COMMENT
APEv2 Comment
iTunes MP4 ©cmt
ASF/Windows Media Description
RIFF INFO ICMT

16.2. Appendix B: Tag Mapping 167

MusicBrainz Picard, Release v2.4.4

16.2.16 Compilation (iTunes) [5]

Internal Name compilation
ID3v2 TCMP
Vorbis COMPILATION
APEv2 Compilation
iTunes MP4 cpil
ASF/Windows Media WM/IsCompilation
RIFF INFO n/a

16.2.17 Composer

Internal Name composer
ID3v2 TCOM
Vorbis COMPOSER
APEv2 Composer
iTunes MP4 ©wrt
ASF/Windows Media WM/Composer
RIFF INFO IMUS

16.2.18 Composer Sort Order

Internal Name composersort
ID3v2 TSOC (Picard>=1.3) TXXX:COMPOSERSORT (Picard<=1.2)
Vorbis COMPOSERSORT
APEv2 COMPOSERSORT
iTunes MP4 soco
ASF/Windows Media WM/ComposerSortOrder (Picard>=1.3)
RIFF INFO n/a

16.2.19 Conductor

Internal Name conductor
ID3v2 TPE3
Vorbis CONDUCTOR
APEv2 Conductor
iTunes MP4 ----:com.apple.iTunes:CONDUCTOR
ASF/Windows Media WM/Conductor
RIFF INFO n/a

168 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.20 Copyright [4]

Internal Name copyright
ID3v2 TCOP
Vorbis COPYRIGHT
APEv2 Copyright
iTunes MP4 cprt
ASF/Windows Media Copyright
RIFF INFO ICOP

16.2.21 Disc Number

Internal Name discnumber
ID3v2 TPOS
Vorbis DISCNUMBER
APEv2 Disc
iTunes MP4 disk
ASF/Windows Media WM/PartOfSet
RIFF INFO n/a

16.2.22 Disc Subtitle

Internal Name discsubtitle
ID3v2 TSST (ID3v2.4 only)
Vorbis DISCSUBTITLE
APEv2 DiscSubtitle
iTunes MP4 ----:com.apple.iTunes:DISCSUBTITLE
ASF/Windows Media WM/SetSubTitle
RIFF INFO n/a

16.2.23 Encoded By [4]

Internal Name encodedby
ID3v2 TENC
Vorbis ENCODEDBY
APEv2 EncodedBy
iTunes MP4 ©too
ASF/Windows Media WM/EncodedBy
RIFF INFO IENC

16.2. Appendix B: Tag Mapping 169

MusicBrainz Picard, Release v2.4.4

16.2.24 Encoder Settings [4]

Internal Name encodersettings
ID3v2 TSSE
Vorbis ENCODERSETTINGS
APEv2 EncoderSettings
iTunes MP4 n/a
ASF/Windows Media WM/EncodingSettings (Picard>=1.3.1)
RIFF INFO n/a

16.2.25 Engineer

Internal Name engineer
ID3v2 TIPL:engineer (ID3v2.4) IPLS:engineer (ID3v2.3)
Vorbis ENGINEER
APEv2 Engineer
iTunes MP4 ----:com.apple.iTunes:ENGINEER
ASF/Windows Media WM/Engineer
RIFF INFO IENG

16.2.26 Gapless Playback [4]

Internal Name gapless
ID3v2 n/a
Vorbis n/a
APEv2 n/a
iTunes MP4 pgap
ASF/Windows Media n/a
RIFF INFO n/a

16.2.27 Genre

Internal Name genre
ID3v2 TCON
Vorbis GENRE
APEv2 Genre
iTunes MP4 ©gen
ASF/Windows Media WM/Genre
RIFF INFO IGNR

170 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.28 Grouping [3]

Internal Name grouping
ID3v2 TIT1 GRP1 [8]

Vorbis GROUPING
APEv2 Grouping
iTunes MP4 ©grp
ASF/Windows Media WM/ContentGroupDescription
RIFF INFO n/a

16.2.29 Initial Key

Internal Name key (Picard>=1.4)
ID3v2 TKEY
Vorbis KEY
APEv2 KEY
iTunes MP4 ----:com.apple.iTunes:initialkey
ASF/Windows Media WM/InitialKey
RIFF INFO n/a

16.2.30 ISRC

Internal Name isrc
ID3v2 TSRC
Vorbis ISRC
APEv2 ISRC
iTunes MP4 ----:com.apple.iTunes:ISRC
ASF/Windows Media WM/ISRC
RIFF INFO n/a

16.2.31 Language

Internal Name language
ID3v2 TLAN
Vorbis LANGUAGE
APEv2 Language
iTunes MP4 ----:com.apple.iTunes:LANGUAGE
ASF/Windows Media WM/Language
RIFF INFO ILNG

16.2. Appendix B: Tag Mapping 171

MusicBrainz Picard, Release v2.4.4

16.2.32 License [6, 7]

Internal Name license
ID3v2 WCOP (single URL) TXXX:LICENSE (multiple or non-URL)
Vorbis LICENSE
APEv2 LICENSE
iTunes MP4 ----:com.apple.iTunes:LICENSE
ASF/Windows Media n/a
RIFF INFO n/a

16.2.33 Lyricist

Internal Name lyricist
ID3v2 TEXT
Vorbis LYRICIST
APEv2 Lyricist
iTunes MP4 ----:com.apple.iTunes:LYRICIST
ASF/Windows Media WM/Writer
RIFF INFO n/a

16.2.34 Lyrics [4]

Internal Name lyrics:description
ID3v2 USLT:description
Vorbis LYRICS
APEv2 Lyrics
iTunes MP4 ©lyr
ASF/Windows Media WM/Lyrics
RIFF INFO n/a

16.2.35 Media

Internal Name media
ID3v2 TMED
Vorbis MEDIA
APEv2 Media
iTunes MP4 ----:com.apple.iTunes:MEDIA
ASF/Windows Media WM/Media
RIFF INFO IMED

172 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.36 Mix-DJ

Internal Name djmixer
ID3v2 TIPL:DJ-mix (ID3v2.4) IPLS:DJ-mix (ID3v2.3)
Vorbis DJMIXER
APEv2 DJMixer
iTunes MP4 ----:com.apple.iTunes:DJMIXER
ASF/Windows Media WM/DJMixer
RIFF INFO n/a

16.2.37 Mixer

Internal Name mixer
ID3v2 TIPL:mix (ID3v2.4) IPLS:mix (ID3v2.3)
Vorbis MIXER
APEv2 Mixer
iTunes MP4 ----:com.apple.iTunes:MIXER
ASF/Windows Media WM/Mixer
RIFF INFO n/a

16.2.38 Mood [3]

Internal Name mood
ID3v2 TMOO (ID3v2.4 only)
Vorbis MOOD
APEv2 Mood
iTunes MP4 ----:com.apple.iTunes:MOOD
ASF/Windows Media WM/Mood
RIFF INFO n/a

16.2.39 Movement [4]

Internal Name movement (Picard>=2.1)
ID3v2 MVNM
Vorbis MOVEMENTNAME
APEv2 MOVEMENTNAME
iTunes MP4 ©mvn
ASF/Windows Media n/a
RIFF INFO n/a

16.2. Appendix B: Tag Mapping 173

MusicBrainz Picard, Release v2.4.4

16.2.40 Movement Count [4]

Internal Name movementtotal (Picard>=2.1)
ID3v2 MVIN
Vorbis MOVEMENTTOTAL
APEv2 MOVEMENTTOTAL
iTunes MP4 mvc
ASF/Windows Media n/a
RIFF INFO n/a

16.2.41 Movement Number [4]

Internal Name movementnumber (Picard>=2.1)
ID3v2 MVIN
Vorbis MOVEMENT
APEv2 MOVEMENT
iTunes MP4 mvi
ASF/Windows Media n/a
RIFF INFO n/a

16.2.42 MusicBrainz Artist ID

Internal Name musicbrainz_artistid
ID3v2 TXXX:MusicBrainz Artist Id
Vorbis MUSICBRAINZ_ARTISTID
APEv2 MUSICBRAINZ_ARTISTID
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Artist Id
ASF/Windows Media MusicBrainz/Artist Id
RIFF INFO n/a

16.2.43 MusicBrainz Disc ID

Internal Name musicbrainz_discid
ID3v2 TXXX:MusicBrainz Disc Id
Vorbis MUSICBRAINZ_DISCID
APEv2 MUSICBRAINZ_DISCID
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Disc Id
ASF/Windows Media MusicBrainz/Disc Id
RIFF INFO n/a

174 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.44 MusicBrainz Original Artist ID

Internal Name musicbrainz_originalartistid
ID3v2 TXXX:MusicBrainz Original Artist Id
Vorbis MUSICBRAINZ_ORIGINALARTISTID
APEv2 n/a
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Original Artist

Id (Picard>=2.1)
ASF/Windows Media MusicBrainz/Original Artist Id (Picard>=2.1)
RIFF INFO n/a

16.2.45 MusicBrainz Original Release ID

Internal Name musicbrainz_originalalbumid
ID3v2 TXXX:MusicBrainz Original Album Id
Vorbis MUSICBRAINZ_ORIGINALALBUMID
APEv2 n/a
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Original Album

Id (Picard>=2.1)
ASF/Windows Media MusicBrainz/Original Album Id (Picard>=2.1)
RIFF INFO n/a

16.2.46 MusicBrainz Recording ID

Internal Name musicbrainz_recordingid
ID3v2 UFID:http://musicbrainz.org
Vorbis MUSICBRAINZ_TRACKID
APEv2 MUSICBRAINZ_TRACKID
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Track Id
ASF/Windows Media MusicBrainz/Track Id
RIFF INFO n/a

16.2.47 MusicBrainz Release Artist ID

Internal Name musicbrainz_albumartistid
ID3v2 TXXX:MusicBrainz Album Artist Id
Vorbis MUSICBRAINZ_ALBUMARTISTID
APEv2 MUSICBRAINZ_ALBUMARTISTID
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Artist Id
ASF/Windows Media MusicBrainz/Album Artist Id
RIFF INFO n/a

16.2. Appendix B: Tag Mapping 175

MusicBrainz Picard, Release v2.4.4

16.2.48 MusicBrainz Release Group ID

Internal Name musicbrainz_releasegroupid
ID3v2 TXXX:MusicBrainz Release Group Id
Vorbis MUSICBRAINZ_RELEASEGROUPID
APEv2 MUSICBRAINZ_RELEASEGROUPID
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Release Group Id
ASF/Windows Media MusicBrainz/Release Group Id
RIFF INFO n/a

16.2.49 MusicBrainz Release ID

Internal Name musicbrainz_albumid
ID3v2 TXXX:MusicBrainz Album Id
Vorbis MUSICBRAINZ_ALBUMID
APEv2 MUSICBRAINZ_ALBUMID
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Id
ASF/Windows Media MusicBrainz/Album Id
RIFF INFO n/a

16.2.50 MusicBrainz Track ID

Internal Name musicbrainz_trackid
ID3v2 TXXX:MusicBrainz Release Track Id
Vorbis MUSICBRAINZ_RELEASETRACKID
APEv2 MUSICBRAINZ_RELEASETRACKID
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Release Track Id
ASF/Windows Media MusicBrainz/Release Track Id
RIFF INFO n/a

16.2.51 MusicBrainz TRM ID

Internal Name musicbrainz_trmid (deprecated)
ID3v2 TXXX:MusicBrainz TRM Id
Vorbis MUSICBRAINZ_TRMID
APEv2 MUSICBRAINZ_TRMID
iTunes MP4 ----:com.apple.iTunes:MusicBrainz TRM Id
ASF/Windows Media MusicBrainz/TRM Id
RIFF INFO n/a

176 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.52 MusicBrainz Work ID

Internal Name musicbrainz_workid
ID3v2 TXXX:MusicBrainz Work Id
Vorbis MUSICBRAINZ_WORKID
APEv2 MUSICBRAINZ_WORKID
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Work Id
ASF/Windows Media MusicBrainz/Work Id
RIFF INFO n/a

16.2.53 MusicIP Fingerprint

Internal Name musicip_fingerprint
ID3v2 TXXX:MusicMagic Fingerprint
Vorbis FINGERPRINT=MusicMagic Fingerprint {fingerprint}
APEv2 n/a
iTunes MP4 ----:com.apple.iTunes:fingerprint
ASF/Windows Media n/a
RIFF INFO n/a

16.2.54 MusicIP PUID

Internal Name musicip_puid
ID3v2 TXXX:MusicIP PUID
Vorbis MUSICIP_PUID
APEv2 MUSICIP_PUID
iTunes MP4 ----:com.apple.iTunes:MusicIP PUID
ASF/Windows Media MusicIP/PUID
RIFF INFO n/a

16.2.55 Original Album

Internal Name originalalbum
ID3v2 TOAL
Vorbis n/a
APEv2 n/a
iTunes MP4 n/a
ASF/Windows Media WM/OriginalAlbumTitle (Picard>=2.1)
RIFF INFO n/a

16.2. Appendix B: Tag Mapping 177

MusicBrainz Picard, Release v2.4.4

16.2.56 Original Artist

Internal Name originalartist
ID3v2 TOPE
Vorbis n/a
APEv2 Original Artist (Picard>=2.1)
iTunes MP4 n/a
ASF/Windows Media WM/OriginalArtist (Picard>=2.1)
RIFF INFO n/a

16.2.57 Original Filename

Internal Name originalfilename (Picard>=2.3)
ID3v2 TOFN
Vorbis ORIGINALFILENAME
APEv2 ORIGINALFILENAME
iTunes MP4 n/a
ASF/Windows Media WM/OriginalFilename
RIFF INFO n/a

16.2.58 Original Release Date [1]

Internal Name originaldate
ID3v2 TDOR (ID3v2.4) TORY (ID3v2.3)
Vorbis ORIGINALDATE
APEv2 n/a
iTunes MP4 n/a
ASF/Windows Media WM/OriginalReleaseTime (Picard>=1.3.1) WM/

OriginalReleaseYear (Picard<=1.3.0)
RIFF INFO n/a

16.2.59 Original Release Year [1]

Internal Name originalyear
ID3v2 n/a
Vorbis ORIGINALYEAR
APEv2 ORIGINALYEAR
iTunes MP4 n/a
ASF/Windows Media WM/OriginalReleaseYear (Picard>=1.3.1)
RIFF INFO n/a

178 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.60 Performer

Internal Name performer:instrument
ID3v2 TMCL:instrument (ID3v2.4) IPLS:instrument (ID3v2.3)
Vorbis PERFORMER={artist} (instrument)
APEv2 Performer={artist} (instrument)
iTunes MP4 n/a
ASF/Windows Media n/a
RIFF INFO n/a

See also:

Please refer to Relationship Types / Artist-Release / Performer , Relationship Types / Artist-Release / Vocal
, Relationship Types / Artist-Release / Instrument , Relationship Types / Artist-Recording / Performer ,
Relationship Types / Artist-Recording / Vocal , and Relationship Types / Artist-Recording / Instrument for
more information.

16.2.61 Podcast [4]

Internal Name podcast
ID3v2 n/a
Vorbis n/a
APEv2 n/a
iTunes MP4 pcst
ASF/Windows Media n/a
RIFF INFO n/a

16.2.62 Podcast URL [4]

Internal Name podcasturl
ID3v2 n/a
Vorbis n/a
APEv2 n/a
iTunes MP4 purl
ASF/Windows Media n/a
RIFF INFO n/a

16.2. Appendix B: Tag Mapping 179

https://musicbrainz.org/relationship/888a2320-52e4-4fe8-a8a0-7a4c8dfde167
https://musicbrainz.org/relationship/eb10f8a0-0f4c-4dce-aa47-87bcb2bc42f3
https://musicbrainz.org/relationship/67555849-61e5-455b-96e3-29733f0115f5
https://musicbrainz.org/relationship/628a9658-f54c-4142-b0c0-95f031b544da
https://musicbrainz.org/relationship/0fdbe3c6-7700-4a31-ae54-b53f06ae1cfa
https://musicbrainz.org/relationship/59054b12-01ac-43ee-a618-285fd397e461

MusicBrainz Picard, Release v2.4.4

16.2.63 Producer

Internal Name producer
ID3v2 TIPL:producer (ID3v2.4) IPLS:producer (ID3v2.3)
Vorbis PRODUCER
APEv2 Producer
iTunes MP4 ----:com.apple.iTunes:PRODUCER
ASF/Windows Media WM/Producer
RIFF INFO IPRO

16.2.64 Rating

Internal Name _rating
ID3v2 POPM
Vorbis RATING:user@email
APEv2 n/a
iTunes MP4 n/a
ASF/Windows Media WM/SharedUserRating
RIFF INFO n/a

16.2.65 Record Label

Internal Name label
ID3v2 TPUB
Vorbis LABEL
APEv2 Label
iTunes MP4 ----:com.apple.iTunes:LABEL
ASF/Windows Media WM/Publisher
RIFF INFO n/a

16.2.66 Release Country

Internal Name releasecountry
ID3v2 TXXX:MusicBrainz Album Release Country
Vorbis RELEASECOUNTRY
APEv2 RELEASECOUNTRY
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Release

Country
ASF/Windows Media MusicBrainz/Album Release Country
RIFF INFO ICNT

180 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.67 Release Date

Internal Name date
ID3v2 TDRC (ID3v2.4) TYER + TDAT (ID3v2.3)
Vorbis DATE
APEv2 Year
iTunes MP4 ©day
ASF/Windows Media WM/Year
RIFF INFO ICRD

16.2.68 Release Status

Internal Name releasestatus
ID3v2 TXXX:MusicBrainz Album Status
Vorbis RELEASESTATUS
APEv2 MUSICBRAINZ_ALBUMSTATUS
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Status
ASF/Windows Media MusicBrainz/Album Status
RIFF INFO n/a

16.2.69 Release Type

Internal Name releasetype
ID3v2 TXXX:MusicBrainz Album Type
Vorbis RELEASETYPE
APEv2 MUSICBRAINZ_ALBUMTYPE
iTunes MP4 ----:com.apple.iTunes:MusicBrainz Album Type
ASF/Windows Media MusicBrainz/Album Type
RIFF INFO n/a

16.2.70 Remixer

Internal Name remixer
ID3v2 TPE4
Vorbis REMIXER
APEv2 MixArtist
iTunes MP4 ----:com.apple.iTunes:REMIXER
ASF/Windows Media WM/ModifiedBy
RIFF INFO n/a

16.2. Appendix B: Tag Mapping 181

MusicBrainz Picard, Release v2.4.4

16.2.71 ReplayGain Album Gain

Internal Name replaygain_album_gain (Picard>=2.2)
ID3v2 TXXX:REPLAYGAIN_ALBUM_GAIN
Vorbis REPLAYGAIN_ALBUM_GAIN
APEv2 REPLAYGAIN_ALBUM_GAIN
iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_ALBUM_GAIN
ASF/Windows Media REPLAYGAIN_ALBUM_GAIN
RIFF INFO n/a

16.2.72 ReplayGain Album Peak

Internal Name replaygain_album_peak (Picard>=2.2)
ID3v2 TXXX:REPLAYGAIN_ALBUM_PEAK
Vorbis REPLAYGAIN_ALBUM_PEAK
APEv2 REPLAYGAIN_ALBUM_PEAK
iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_ALBUM_PEAK
ASF/Windows Media REPLAYGAIN_ALBUM_PEAK
RIFF INFO n/a

16.2.73 ReplayGain Album Range

Internal Name replaygain_album_range (Picard>=2.2)
ID3v2 TXXX:REPLAYGAIN_ALBUM_RANGE
Vorbis REPLAYGAIN_ALBUM_RANGE
APEv2 REPLAYGAIN_ALBUM_RANGE
iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_ALBUM_RANGE
ASF/Windows Media REPLAYGAIN_ALBUM_RANGE
RIFF INFO n/a

16.2.74 ReplayGain Reference Loudness

Internal Name replaygain_reference_loudness (Picard>=2.2)
ID3v2 TXXX:REPLAYGAIN_REFERENCE_LOUDNESS
Vorbis REPLAYGAIN_REFERENCE_LOUDNESS
APEv2 REPLAYGAIN_REFERENCE_LOUDNESS
iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_REFERENCE_LOUDNESS
ASF/Windows Media REPLAYGAIN_REFERENCE_LOUDNESS
RIFF INFO n/a

182 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.75 ReplayGain Track Gain

Internal Name replaygain_track_gain (Picard>=2.2)
ID3v2 TXXX:REPLAYGAIN_TRACK_GAIN
Vorbis REPLAYGAIN_TRACK_GAIN
APEv2 REPLAYGAIN_TRACK_GAIN
iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_TRACK_GAIN
ASF/Windows Media REPLAYGAIN_TRACK_GAIN
RIFF INFO n/a

16.2.76 ReplayGain Track Peak

Internal Name replaygain_track_peak (Picard>=2.2)
ID3v2 TXXX:REPLAYGAIN_TRACK_PEAK
Vorbis REPLAYGAIN_TRACK_PEAK
APEv2 REPLAYGAIN_TRACK_PEAK
iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_TRACK_PEAK
ASF/Windows Media REPLAYGAIN_TRACK_PEAK
RIFF INFO n/a

16.2.77 ReplayGain Track Range

Internal Name replaygain_track_range (Picard>=2.2)
ID3v2 TXXX:REPLAYGAIN_TRACK_RANGE
Vorbis REPLAYGAIN_TRACK_RANGE
APEv2 REPLAYGAIN_TRACK_RANGE
iTunes MP4 ----:com.apple.iTunes:REPLAYGAIN_TRACK_RANGE
ASF/Windows Media REPLAYGAIN_TRACK_RANGE
RIFF INFO n/a

16.2.78 Script

Internal Name script
ID3v2 TXXX:SCRIPT
Vorbis SCRIPT
APEv2 Script
iTunes MP4 ----:com.apple.iTunes:SCRIPT
ASF/Windows Media WM/Script
RIFF INFO n/a

16.2. Appendix B: Tag Mapping 183

MusicBrainz Picard, Release v2.4.4

16.2.79 Show Name [4]

Internal Name show
ID3v2 n/a
Vorbis n/a
APEv2 n/a
iTunes MP4 tvsh
ASF/Windows Media n/a
RIFF INFO n/a

16.2.80 Show Name Sort Order [4]

Internal Name showsort
ID3v2 n/a
Vorbis n/a
APEv2 n/a
iTunes MP4 sosn
ASF/Windows Media n/a
RIFF INFO n/a

16.2.81 Show Work & Movement [4]

Internal Name showmovement (Picard>=2.1)
ID3v2 TXXX:SHOWMOVEMENT
Vorbis SHOWMOVEMENT
APEv2 SHOWMOVEMENT
iTunes MP4 shwm
ASF/Windows Media n/a
RIFF INFO n/a

16.2.82 Subtitle [4]

Internal Name subtitle
ID3v2 TIT3
Vorbis SUBTITLE
APEv2 Subtitle
iTunes MP4 ----:com.apple.iTunes:SUBTITLE
ASF/Windows Media WM/SubTitle
RIFF INFO n/a

184 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

16.2.83 Total Discs

Internal Name totaldiscs
ID3v2 TPOS
Vorbis DISCTOTAL and TOTALDISCS
APEv2 Disc
iTunes MP4 disk
ASF/Windows Media WM/PartOfSet (Picard>=1.3.1)
RIFF INFO n/a

16.2.84 Total Tracks

Internal Name totaltracks
ID3v2 TRCK
Vorbis TRACKTOTAL and TOTALTRACKS
APEv2 Track
iTunes MP4 trkn
ASF/Windows Media n/a
RIFF INFO n/a

16.2.85 Track Number

Internal Name tracknumber
ID3v2 TRCK
Vorbis TRACKNUMBER
APEv2 Track
iTunes MP4 trkn
ASF/Windows Media WM/TrackNumber
RIFF INFO ITRK

16.2.86 Track Title

Internal Name title
ID3v2 TIT2
Vorbis TITLE
APEv2 Title
iTunes MP4 ©nam
ASF/Windows Media Title
RIFF INFO INAM

16.2. Appendix B: Tag Mapping 185

MusicBrainz Picard, Release v2.4.4

16.2.87 Track Title Sort Order [4]

Internal Name titlesort
ID3v2 TSOT
Vorbis TITLESORT
APEv2 TITLESORT
iTunes MP4 sonm
ASF/Windows Media WM/TitleSortOrder
RIFF INFO n/a

16.2.88 Website (official artist website)

Internal Name website
ID3v2 WOAR
Vorbis WEBSITE
APEv2 Weblink
iTunes MP4 n/a
ASF/Windows Media WM/AuthorURL (Picard>=1.3.1)
RIFF INFO n/a

16.2.89 Work Title

Internal Name work (Picard>=1.3)
ID3v2 TXXX:WORK TIT1 [8]

Vorbis WORK
APEv2 WORK
iTunes MP4 ©wrk (Picard>=2.1)
ASF/Windows Media WM/Work
RIFF INFO n/a

16.2.90 Writer [2]

Internal Name writer
ID3v2 TXXX:Writer (Picard>=1.3)
Vorbis WRITER
APEv2 Writer
iTunes MP4 n/a
ASF/Windows Media n/a
RIFF INFO IWRI

186 Chapter 16. Appendices

MusicBrainz Picard, Release v2.4.4

Notes:

1. Taken from the earliest release in the release group.

2. Used when uncertain whether composer or lyricist.

3. This is populated by LastFMPlus plugin and not by stock Picard.

4. This is not able to be populated by stock Picard. It may be used and populated by certain plugins.

5. For Picard>=1.3 this indicates a Various Artists album; for Picard<=1.2 this indicates albums with
tracks by different artists which is incorrect (e.g.: an original album with a duet with a feat. artist
would show as a Compilation). In neither case does this indicate a MusicBrainz Release Group
subtype of compilation.

6. Release-level license relationship type.

7. Recording-level license relationship type.

8. With “Save iTunes compatible grouping and work” (since Picard>=2.1.0)

16.3 Appendix C: Command Line Options

Picard can be started from the command line with the following arguments:

picard [-h] [-c CONFIG_FILE] [-d] [-N] [-P] [-v] [-V] [FILE [FILE ...]]

where the options are:

-h, --help show a help message and exit

-c CONFIG_FILE, --config-file CONFIG_FILE location of the configuration file to use

-d, --debug enable debug-level logging

-N, --no-restore do not restore window positions or sizes

-P, --no-plugins do not load any plugins

-v, --version display the version information and exit

-V, --long-version display the long version information and exit

FILE is the file or files to load

16.3. Appendix C: Command Line Options 187

https://musicbrainz.org/relationship/004bd0c3-8a45-4309-ba52-fa99f3aa3d50
https://musicbrainz.org/relationship/f25e301d-b87b-4561-86a0-5d2df6d26c0a

INDEX

A
acknowledgements, 4
acoustic fingerprint, 6, 156

submitting, 132, 133, 138
AcoustID, 6

submitting, 138
albumartist, 6
api

plugins, 158
artist, 6
artist credit, 6
audio player, 155

B
browser

configuration, 157

C
CAA, see cover art archive
command line

options, 187
configuration

aac tag options, 28
ac3 tag options, 29
action options, 14
advanced options, 54
before tagging, 25
browser, 157
cd lookup, 42
colors, 51
config file location, 156
cover art, 32
cover art archive, 35
cover art location, 33
cover art providers, 33
file naming, 38
fingerprinting, 41

general options, 16
genres, 21
id3 tag options, 26
local files, 37
matching preferences, 58
metadata options, 18
network, 56
plugins, 45
ratings, 23
release preferences, 20
screen setup, 14
scripting, 53
tag options, 24
top tags, 52
update checking, 17
user interface, 49
wave tag options, 30

context menu actions
plugins, 163

contributing, 3
cover art

configuration, 32
location to save, 33
setting, 127

cover art archive, 7
configuration, 35

D
disc id, 7

attaching, 136

E
event hooks

plugins, 160

F
file format

plugins, 161

188

MusicBrainz Picard, Release v2.4.4

file formats, 154
file naming

configuration, 38
scripts, 144

files
saving, 129

fingerprint
acoustic, 6, 156
submitting, 138

flatpak
install, 10

G
glossary, 6

I
icon

tagger, 153
icons

album, 12
release, 12
status, 12
track, 12

install
download, 10
flatpak, 10

itunes, 156

L
limitations, 2
lookup cd, 112
lookup files, 115
lookup in browser, 119

M
mapping

tags, 164
matching files to tracks, 126
mbid, see MusicBrainz Identifier
medium, 7
MusicBrainz Identifier, 7

N
non-album track, see standalone recording

O
option settings, see configuration
options

command line, 187

P
plugins, 143

api, 158
configuration, 45
context menu actions, 163
event hooks, 160
file format, 161
installing, 47
metadata, 158
metadata processors, 159
programming, 158
scripting functions, 162
third-party, 45
types, 143

processing order, 145
programming

plugins, 158

R
rate limiting, 2
recording, 7

standalone, 8
release, 8
release group, 8

S
saving files, 129
scan files, 117
scripting

functions, 74
scripting functions

assignment, 74
conditional, 97
information, 108
loop, 109
mathematical, 95
miscellaneous, 110
multi-value, 88
plugins, 162
text, 77

scripts, 73, 144
file naming, 39, 144
syntax, 73
tagging, 53, 144
tags, 60
variables, 60

Index 189

MusicBrainz Picard, Release v2.4.4

standalone recording, 8

T
tagger icon, 153
tagging

scripts, 144
tags

advanced, 65
basic, 60
classical, 69
editing, 155
genre, 66
mapping, 164
plugins, 69
writing, 72

track, 8
troubleshooting

files not saved, 150
general, 148
logs, 148
no cover art displayed, 149
no cover art downloaded, 149
program freezes, 151
reporting a bug, 148
tags not saved, 150

U
update checking

configuration, 17
user interface

colors, 51
configuration, 49
main screen, 11

V
variables

advanced, 68
basic, 66

W
work, 8
workflows

cd, 131
files grouped by album, 132
files not grouped, 133
general, 131
no metadata, 134

190 Index

	Introduction
	Picard Can…
	Picard Cannot…
	Limitations

	Contributing to the Project
	Acknowledgements
	Editor and English Language Lead
	Translation Teams
	Contributors

	Glossary of Terms
	Getting Started
	Download & Install Picard
	Main Screen
	Status Icons

	Configuration
	Screen Setup
	Action Options
	Option Settings

	Tags & Variables
	Basic Tags
	Advanced Tags
	Basic Variables
	Advanced Variables
	Classical Music Tags
	Tags from Plugins
	Other Information

	Scripting
	Syntax
	Metadata Variables

	Scripting Functions
	Assignment Functions
	Text Functions
	Multi-Value Functions
	Mathematical Functions
	Conditional Functions
	Information Functions
	Loop Functions
	Miscellaneous Functions

	Using Picard
	Retrieving Album information
	Matching Files to Tracks
	Setting the Cover Art
	Saving Updated Files

	Work Flow Recommendations
	When the CD is available
	When files are grouped by album
	When files are not grouped but have some metadata
	When files are not grouped and have little or no existing metadata

	Other Picard Tasks
	Attaching a Disc ID to a Release
	Submitting Acoustic Fingerprints

	Extending Picard
	Plugins
	Scripts
	Processing Order

	Troubleshooting
	General Troubleshooting
	There is no coverart
	Tags are not updated or saved
	Files are not being saved
	Picard just stopped working

	Frequently Asked Questions
	Using Picard
	File Formats
	Configuration

	Appendices
	Appendix A: Plugins API
	Appendix B: Tag Mapping
	Appendix C: Command Line Options

	Index

